标签 Darwin 下的文章

也谈Go的可移植性

Go有很多优点,比如:简单原生支持并发等,而不错的可移植性也是Go被广大程序员接纳的重要因素之一。但你知道为什么Go语言拥有很好的平台可移植性吗?本着“知其然,亦要知其所以然”的精神,本文我们就来探究一下Go良好可移植性背后的原理。

一、Go的可移植性

说到一门编程语言可移植性,我们一般从下面两个方面考量:

  • 语言自身被移植到不同平台的容易程度;
  • 通过这种语言编译出来的应用程序对平台的适应性。

Go 1.7及以后版本中,我们可以通过下面命令查看Go支持OS和平台列表:

$go tool dist list
android/386
android/amd64
android/arm
android/arm64
darwin/386
darwin/amd64
darwin/arm
darwin/arm64
dragonfly/amd64
freebsd/386
freebsd/amd64
freebsd/arm
linux/386
linux/amd64
linux/arm
linux/arm64
linux/mips
linux/mips64
linux/mips64le
linux/mipsle
linux/ppc64
linux/ppc64le
linux/s390x
nacl/386
nacl/amd64p32
nacl/arm
netbsd/386
netbsd/amd64
netbsd/arm
openbsd/386
openbsd/amd64
openbsd/arm
plan9/386
plan9/amd64
plan9/arm
solaris/amd64
windows/386
windows/amd64

从上述列表我们可以看出:从linux/arm64的嵌入式系统到linux/s390x的大型机系统,再到Windows、linux和darwin(mac)这样的主流操作系统、amd64、386这样的主流处理器体系,Go对各种平台和操作系统的支持不可谓不广泛。

Go官方似乎没有给出明确的porting guide,关于将Go语言porting到其他平台上的内容更多是在golang-dev这样的小圈子中讨论的事情。但就Go语言这么短的时间就能很好的支持这么多平台来看,Go的porting还是相对easy的。从个人对Go的了解来看,这一定程度上得益于Go独立实现了runtime。

img{512x368}

runtime是支撑程序运行的基础。我们最熟悉的莫过于libc(C运行时),它是目前主流操作系统上应用最普遍的运行时,通常以动态链接库的形式(比如:/lib/x86_64-linux-gnu/libc.so.6)随着系统一并发布,它的功能大致有如下几个:

  • 提供基础库函数调用,比如:strncpy
  • 封装syscall(注:syscall是操作系统提供的API口,当用户层进行系统调用时,代码会trap(陷入)到内核层面执行),并提供同语言的库函数调用,比如:malloc、fread等;
  • 提供程序启动入口函数,比如:linux下的__libc_start_main。

libc等c runtime lib是很早以前就已经实现的了,甚至有些老旧的libc还是单线程的。一些从事c/c++开发多年的程序员早年估计都有过这样的经历:那就是链接runtime库时甚至需要选择链接支持多线程的库还是只支持单线程的库。除此之外,c runtime的版本也参差不齐。这样的c runtime状况完全不能满足go语言自身的需求;另外Go的目标之一是原生支持并发,并使用goroutine模型,c runtime对此是无能为力的,因为c runtime本身是基于线程模型的。综合以上因素,Go自己实现了runtime,并封装了syscall,为不同平台上的go user level代码提供封装完成的、统一的go标准库;同时Go runtime实现了对goroutine模型的支持。

独立实现的go runtime层将Go user-level code与OS syscall解耦,把Go porting到一个新平台时,将runtime与新平台的syscall对接即可(当然porting工作不仅仅只有这些);同时,runtime层的实现基本摆脱了Go程序对libc的依赖,这样静态编译的Go程序具有很好的平台适应性。比如:一个compiled for linux amd64的Go程序可以很好的运行于不同linux发行版(centos、ubuntu)下。

以下测试试验环境为:darwin amd64 Go 1.8

二、默认”静态链接”的Go程序

我们先来写两个程序:hello.c和hello.go,它们完成的功能都差不多,在stdout上输出一行文字:

//hello.c
#include <stdio.h>

int main() {
        printf("%s\n", "hello, portable c!");
        return 0;
}

//hello.go
package main

import "fmt"

func main() {
    fmt.Println("hello, portable go!")
}

我们采用“默认”方式分别编译以下两个程序:

$cc -o helloc hello.c
$go build -o hellogo hello.go

$ls -l
-rwxr-xr-x    1 tony  staff     8496  6 27 14:18 helloc*
-rwxr-xr-x    1 tony  staff  1628192  6 27 14:18 hellogo*

从编译后的两个文件helloc和hellogo的size上我们可以看到hellogo相比于helloc简直就是“巨人”般的存在,其size近helloc的200倍。略微学过一些Go的人都知道,这是因为hellogo中包含了必需的go runtime。我们通过otool工具(linux上可以用ldd)查看一下两个文件的对外部动态库的依赖情况:

$otool -L helloc
helloc:
    /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1197.1.1)
$otool -L hellogo
hellogo:

通过otool输出,我们可以看到hellogo并不依赖任何外部库,我们将hellog这个二进制文件copy到任何一个mac amd64的平台上,均可以运行起来。而helloc则依赖外部的动态库:/usr/lib/libSystem.B.dylib,而libSystem.B.dylib这个动态库还有其他依赖。我们通过nm工具可以查看到helloc具体是哪个函数符号需要由外部动态库提供:

$nm helloc
0000000100000000 T __mh_execute_header
0000000100000f30 T _main
                 U _printf
                 U dyld_stub_binder

可以看到:_printf和dyld_stub_binder两个符号是未定义的(对应的前缀符号是U)。如果对hellog使用nm,你会看到大量符号输出,但没有未定义的符号。

$nm hellogo
00000000010bb278 s $f64.3eb0000000000000
00000000010bb280 s $f64.3fd0000000000000
00000000010bb288 s $f64.3fe0000000000000
00000000010bb290 s $f64.3fee666666666666
00000000010bb298 s $f64.3ff0000000000000
00000000010bb2a0 s $f64.4014000000000000
00000000010bb2a8 s $f64.4024000000000000
00000000010bb2b0 s $f64.403a000000000000
00000000010bb2b8 s $f64.4059000000000000
00000000010bb2c0 s $f64.43e0000000000000
00000000010bb2c8 s $f64.8000000000000000
00000000010bb2d0 s $f64.bfe62e42fefa39ef
000000000110af40 b __cgo_init
000000000110af48 b __cgo_notify_runtime_init_done
000000000110af50 b __cgo_thread_start
000000000104d1e0 t __rt0_amd64_darwin
000000000104a0f0 t _callRet
000000000104b580 t _gosave
000000000104d200 T _main
00000000010bbb20 s _masks
000000000104d370 t _nanotime
000000000104b7a0 t _setg_gcc
00000000010bbc20 s _shifts
0000000001051840 t errors.(*errorString).Error
00000000010517a0 t errors.New
.... ...
0000000001065160 t type..hash.time.Time
0000000001064f70 t type..hash.time.zone
00000000010650a0 t type..hash.time.zoneTrans
0000000001051860 t unicode/utf8.DecodeRuneInString
0000000001051a80 t unicode/utf8.EncodeRune
0000000001051bd0 t unicode/utf8.RuneCount
0000000001051d10 t unicode/utf8.RuneCountInString
0000000001107080 s unicode/utf8.acceptRanges
00000000011079e0 s unicode/utf8.first

$nm hellogo|grep " U "

Go将所有运行需要的函数代码都放到了hellogo中,这就是所谓的“静态链接”。是不是所有情况下,Go都不会依赖外部动态共享库呢?我们来看看下面这段代码:

//server.go
package main

import (
    "log"
    "net/http"
    "os"
)

func main() {
    cwd, err := os.Getwd()
    if err != nil {
        log.Fatal(err)
    }

    srv := &http.Server{
        Addr:    ":8000", // Normally ":443"
        Handler: http.FileServer(http.Dir(cwd)),
    }
    log.Fatal(srv.ListenAndServe())
}

我们利用Go标准库的net/http包写了一个fileserver,我们build一下该server,并查看它是否有外部依赖以及未定义的符号:

$go build server.go
-rwxr-xr-x    1 tony  staff  5943828  6 27 14:47 server*

$otool -L server
server:
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/Security.framework/Versions/A/Security (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)

$nm server |grep " U "
                 U _CFArrayGetCount
                 U _CFArrayGetValueAtIndex
                 U _CFDataAppendBytes
                 U _CFDataCreateMutable
                 U _CFDataGetBytePtr
                 U _CFDataGetLength
                 U _CFDictionaryGetValueIfPresent
                 U _CFEqual
                 U _CFNumberGetValue
                 U _CFRelease
                 U _CFStringCreateWithCString
                 U _SecCertificateCopyNormalizedIssuerContent
                 U _SecCertificateCopyNormalizedSubjectContent
                 U _SecKeychainItemExport
                 U _SecTrustCopyAnchorCertificates
                 U _SecTrustSettingsCopyCertificates
                 U _SecTrustSettingsCopyTrustSettings
                 U ___error
                 U ___stack_chk_fail
                 U ___stack_chk_guard
                 U ___stderrp
                 U _abort
                 U _fprintf
                 U _fputc
                 U _free
                 U _freeaddrinfo
                 U _fwrite
                 U _gai_strerror
                 U _getaddrinfo
                 U _getnameinfo
                 U _kCFAllocatorDefault
                 U _malloc
                 U _memcmp
                 U _nanosleep
                 U _pthread_attr_destroy
                 U _pthread_attr_getstacksize
                 U _pthread_attr_init
                 U _pthread_cond_broadcast
                 U _pthread_cond_wait
                 U _pthread_create
                 U _pthread_key_create
                 U _pthread_key_delete
                 U _pthread_mutex_lock
                 U _pthread_mutex_unlock
                 U _pthread_setspecific
                 U _pthread_sigmask
                 U _setenv
                 U _strerror
                 U _sysctlbyname
                 U _unsetenv

通过otool和nm的输出结果我们惊讶的看到:默认采用“静态链接”的Go程序怎么也要依赖外部的动态链接库,并且也包含了许多“未定义”的符号了呢?问题在于cgo。

三、cgo对可移植性的影响

默认情况下,Go的runtime环境变量CGO_ENABLED=1,即默认开始cgo,允许你在Go代码中调用C代码,Go的pre-compiled标准库的.a文件也是在这种情况下编译出来的。在$GOROOT/pkg/darwin_amd64中,我们遍历所有预编译好的标准库.a文件,并用nm输出每个.a的未定义符号,我们看到下面一些包是对外部有依赖的(动态链接):

=> crypto/x509.a
                 U _CFArrayGetCount
                 U _CFArrayGetValueAtIndex
                 U _CFDataAppendBytes
                 ... ...
                 U _SecCertificateCopyNormalizedIssuerContent
                 U _SecCertificateCopyNormalizedSubjectContent
                 ... ...
                 U ___stack_chk_fail
                 U ___stack_chk_guard
                 U __cgo_topofstack
                 U _kCFAllocatorDefault
                 U _memcmp
                 U _sysctlbyname

=> net.a
                 U ___error
                 U __cgo_topofstack
                 U _free
                 U _freeaddrinfo
                 U _gai_strerror
                 U _getaddrinfo
                 U _getnameinfo
                 U _malloc

=> os/user.a
                 U __cgo_topofstack
                 U _free
                 U _getgrgid_r
                 U _getgrnam_r
                 U _getgrouplist
                 U _getpwnam_r
                 U _getpwuid_r
                 U _malloc
                 U _realloc
                 U _sysconf

=> plugin.a
                 U __cgo_topofstack
                 U _dlerror
                 U _dlopen
                 U _dlsym
                 U _free
                 U _malloc
                 U _realpath$DARWIN_EXTSN

=> runtime/cgo.a
                 ... ...
                 U _abort
                 U _fprintf
                 U _fputc
                 U _free
                 U _fwrite
                 U _malloc
                 U _nanosleep
                 U _pthread_attr_destroy
                 U _pthread_attr_getstacksize
                 ... ...
                 U _setenv
                 U _strerror
                 U _unsetenv

=> runtime/race.a
                 U _OSSpinLockLock
                 U _OSSpinLockUnlock
                 U __NSGetArgv
                 U __NSGetEnviron
                 U __NSGetExecutablePath
                 U ___error
                 U ___fork
                 U ___mmap
                 U ___munmap
                 U ___stack_chk_fail
                 U ___stack_chk_guard
                 U __dyld_get_image_header
                .... ...

我们以os/user为例,在CGO_ENABLED=1,即cgo开启的情况下,os/user包中的lookupUserxxx系列函数采用了c版本的实现,我们看到在$GOROOT/src/os/user/lookup_unix.go中的build tag中包含了+build cgo。这样一来,在CGO_ENABLED=1,该文件将被编译,该文件中的c版本实现的lookupUser将被使用:

// +build darwin dragonfly freebsd !android,linux netbsd openbsd solaris
// +build cgo

package user
... ...
func lookupUser(username string) (*User, error) {
    var pwd C.struct_passwd
    var result *C.struct_passwd
    nameC := C.CString(username)
    defer C.free(unsafe.Pointer(nameC))
    ... ...
}

这样来看,凡是依赖上述包的Go代码最终编译的可执行文件都是要有外部依赖的。不过我们依然可以通过disable CGO_ENABLED来编译出纯静态的Go程序:

$CGO_ENABLED=0 go build -o server_cgo_disabled server.go

$otool -L server_cgo_disabled
server_cgo_disabled:
$nm server_cgo_disabled |grep " U "

如果你使用build的 “-x -v”选项,你将看到go compiler会重新编译依赖的包的静态版本,包括net、mime/multipart、crypto/tls等,并将编译后的.a(以包为单位)放入临时编译器工作目录($WORK)下,然后再静态连接这些版本。

四、internal linking和external linking

问题来了:在CGO_ENABLED=1这个默认值的情况下,是否可以实现纯静态连接呢?答案是可以。在$GOROOT/cmd/cgo/doc.go中,文档介绍了cmd/link的两种工作模式:internal linking和external linking。

1、internal linking

internal linking的大致意思是若用户代码中仅仅使用了net、os/user等几个标准库中的依赖cgo的包时,cmd/link默认使用internal linking,而无需启动外部external linker(如:gcc、clang等),不过由于cmd/link功能有限,仅仅是将.o和pre-compiled的标准库的.a写到最终二进制文件中。因此如果标准库中是在CGO_ENABLED=1情况下编译的,那么编译出来的最终二进制文件依旧是动态链接的,即便在go build时传入-ldflags ‘extldflags “-static”‘亦无用,因为根本没有使用external linker:

$go build -o server-fake-static-link  -ldflags '-extldflags "-static"' server.go
$otool -L server-fake-static-link
server-fake-static-link:
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/Security.framework/Versions/A/Security (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)

2、external linking

而external linking机制则是cmd/link将所有生成的.o都打到一个.o文件中,再将其交给外部的链接器,比如gcc或clang去做最终链接处理。如果此时,我们在cmd/link的参数中传入-ldflags ‘extldflags “-static”‘,那么gcc/clang将会去做静态链接,将.o中undefined的符号都替换为真正的代码。我们可以通过-linkmode=external来强制cmd/link采用external linker,还是以server.go的编译为例:

$go build -o server-static-link  -ldflags '-linkmode "external" -extldflags "-static"' server.go
# command-line-arguments
/Users/tony/.bin/go18/pkg/tool/darwin_amd64/link: running clang failed: exit status 1
ld: library not found for -lcrt0.o
clang: error: linker command failed with exit code 1 (use -v to see invocation)

可以看到,cmd/link调用的clang尝试去静态连接libc的.a文件,但由于我的mac上仅仅有libc的dylib,而没有.a,因此静态连接失败。我找到一个ubuntu 16.04环境:重新执行上述构建命令:

# go build -o server-static-link  -ldflags '-linkmode "external" -extldflags "-static"' server.go
# ldd server-static-link
    not a dynamic executable
# nm server-static-link|grep " U "

该环境下libc.a和libpthread.a分别在下面两个位置:

/usr/lib/x86_64-linux-gnu/libc.a
/usr/lib/x86_64-linux-gnu/libpthread.a

就这样,我们在CGO_ENABLED=1的情况下,也编译构建出了一个纯静态链接的Go程序。

如果你的代码中使用了C代码,并依赖cgo在go中调用这些c代码,那么cmd/link将会自动选择external linking的机制:

//testcgo.go
package main

//#include <stdio.h>
// void foo(char *s) {
//    printf("%s\n", s);
// }
// void bar(void *p) {
//    int *q = (int*)p;
//    printf("%d\n", *q);
// }
import "C"
import (
    "fmt"
    "unsafe"
)

func main() {
    var s = "hello"
    C.foo(C.CString(s))

    var i int = 5
    C.bar(unsafe.Pointer(&i))

    var i32 int32 = 7
    var p *uint32 = (*uint32)(unsafe.Pointer(&i32))
    fmt.Println(*p)
}

编译testcgo.go:

# go build -o testcgo-static-link  -ldflags '-extldflags "-static"' testcgo.go
# ldd testcgo-static-link
    not a dynamic executable

vs.
# go build -o testcgo testcgo.go
# ldd ./testcgo
    linux-vdso.so.1 =>  (0x00007ffe7fb8d000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fc361000000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fc360c36000)
    /lib64/ld-linux-x86-64.so.2 (0x000055bd26d4d000)

五、小结

本文探讨了Go的可移植性以及哪些因素对Go编译出的程序的移植性有影响:

  • 你的程序用了哪些标准库包?如果仅仅是非net、os/user等的普通包,那么你的程序默认将是纯静态的,不依赖任何c lib等外部动态链接库;
  • 如果使用了net这样的包含cgo代码的标准库包,那么CGO_ENABLED的值将影响你的程序编译后的属性:是静态的还是动态链接的;
  • CGO_ENABLED=0的情况下,Go采用纯静态编译;
  • 如果CGO_ENABLED=1,但依然要强制静态编译,需传递-linkmode=external给cmd/link。

微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

Go语言TCP Socket编程

Golang的主要 设计目标之一就是面向大规模后端服务程序,网络通信这块是服务端 程序必不可少也是至关重要的一部分。在日常应用中,我们也可以看到Go中的net以及其subdirectories下的包均是“高频+刚需”,而TCP socket则是网络编程的主流,即便您没有直接使用到net中有关TCP Socket方面的接口,但net/http总是用到了吧,http底层依旧是用tcp socket实现的。

网络编程方面,我们最常用的就是tcp socket编程了,在posix标准出来后,socket在各大主流OS平台上都得到了很好的支持。关于tcp programming,最好的资料莫过于W. Richard Stevens 的网络编程圣经《UNIX网络 编程 卷1:套接字联网API》 了,书中关于tcp socket接口的各种使用、行为模式、异常处理讲解的十分细致。Go是自带runtime的跨平台编程语言,Go中暴露给语言使用者的tcp socket api是建立OS原生tcp socket接口之上的。由于Go runtime调度的需要,golang tcp socket接口在行为特点与异常处理方面与OS原生接口有着一些差别。这篇博文的目标就是整理出关于Go tcp socket在各个场景下的使用方法、行为特点以及注意事项。

一、模型

从tcp socket诞生后,网络编程架构模型也几经演化,大致是:“每进程一个连接” –> “每线程一个连接” –> “Non-Block + I/O多路复用(linux epoll/windows iocp/freebsd darwin kqueue/solaris Event Port)”。伴随着模型的演化,服务程序愈加强大,可以支持更多的连接,获得更好的处理性能。

目前主流web server一般均采用的都是”Non-Block + I/O多路复用”(有的也结合了多线程、多进程)。不过I/O多路复用也给使用者带来了不小的复杂度,以至于后续出现了许多高性能的I/O多路复用框架, 比如libeventlibevlibuv等,以帮助开发者简化开发复杂性,降低心智负担。不过Go的设计者似乎认为I/O多路复用的这种通过回调机制割裂控制流 的方式依旧复杂,且有悖于“一般逻辑”设计,为此Go语言将该“复杂性”隐藏在Runtime中了:Go开发者无需关注socket是否是 non-block的,也无需亲自注册文件描述符的回调,只需在每个连接对应的goroutine中以“block I/O”的方式对待socket处理即可,这可以说大大降低了开发人员的心智负担。一个典型的Go server端程序大致如下:

//go-tcpsock/server.go
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        // ... ...
        // write to the connection
        //... ...
    }
}

func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        fmt.Println("listen error:", err)
        return
    }

    for {
        c, err := l.Accept()
        if err != nil {
            fmt.Println("accept error:", err)
            break
        }
        // start a new goroutine to handle
        // the new connection.
        go handleConn(c)
    }
}

用户层眼中看到的goroutine中的“block socket”,实际上是通过Go runtime中的netpoller通过Non-block socket + I/O多路复用机制“模拟”出来的,真实的underlying socket实际上是non-block的,只是runtime拦截了底层socket系统调用的错误码,并通过netpoller和goroutine 调度让goroutine“阻塞”在用户层得到的Socket fd上。比如:当用户层针对某个socket fd发起read操作时,如果该socket fd中尚无数据,那么runtime会将该socket fd加入到netpoller中监听,同时对应的goroutine被挂起,直到runtime收到socket fd 数据ready的通知,runtime才会重新唤醒等待在该socket fd上准备read的那个Goroutine。而这个过程从Goroutine的视角来看,就像是read操作一直block在那个socket fd上似的。具体实现细节在后续场景中会有补充描述。

二、TCP连接的建立

众所周知,TCP Socket的连接的建立需要经历客户端和服务端的三次握手的过程。连接建立过程中,服务端是一个标准的Listen + Accept的结构(可参考上面的代码),而在客户端Go语言使用net.Dial或DialTimeout进行连接建立:

阻塞Dial:

conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
    //handle error
}
// read or write on conn

或是带上超时机制的Dial:

conn, err := net.DialTimeout("tcp", ":8080", 2 * time.Second)
if err != nil {
    //handle error
}
// read or write on conn

对于客户端而言,连接的建立会遇到如下几种情形:


1、网络不可达或对方服务未启动

如果传给Dial的Addr是可以立即判断出网络不可达,或者Addr中端口对应的服务没有启动,端口未被监听,Dial会几乎立即返回错误,比如:

//go-tcpsock/conn_establish/client1.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")
}

如果本机8888端口未有服务程序监听,那么执行上面程序,Dial会很快返回错误:

$go run client1.go
2015/11/16 14:37:41 begin dial...
2015/11/16 14:37:41 dial error: dial tcp :8888: getsockopt: connection refused

2、对方服务的listen backlog满

还有一种场景就是对方服务器很忙,瞬间有大量client端连接尝试向server建立,server端的listen backlog队列满,server accept不及时((即便不accept,那么在backlog数量范畴里面,connect都会是成功的,因为new conn已经加入到server side的listen queue中了,accept只是从queue中取出一个conn而已),这将导致client端Dial阻塞。我们还是通过例子感受Dial的行为特点:

服务端代码:

//go-tcpsock/conn_establish/server2.go
... ...
func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        log.Println("error listen:", err)
        return
    }
    defer l.Close()
    log.Println("listen ok")

    var i int
    for {
        time.Sleep(time.Second * 10)
        if _, err := l.Accept(); err != nil {
            log.Println("accept error:", err)
            break
        }
        i++
        log.Printf("%d: accept a new connection\n", i)
    }
}

客户端代码:

//go-tcpsock/conn_establish/client2.go
... ...
func establishConn(i int) net.Conn {
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Printf("%d: dial error: %s", i, err)
        return nil
    }
    log.Println(i, ":connect to server ok")
    return conn
}

func main() {
    var sl []net.Conn
    for i := 1; i < 1000; i++ {
        conn := establishConn(i)
        if conn != nil {
            sl = append(sl, conn)
        }
    }

    time.Sleep(time.Second * 10000)
}

从程序可以看出,服务端在listen成功后,每隔10s钟accept一次。客户端则是串行的尝试建立连接。这两个程序在Darwin下的执行 结果:

$go run server2.go
2015/11/16 21:55:41 listen ok
2015/11/16 21:55:51 1: accept a new connection
2015/11/16 21:56:01 2: accept a new connection
... ...

$go run client2.go
2015/11/16 21:55:44 1 :connect to server ok
2015/11/16 21:55:44 2 :connect to server ok
2015/11/16 21:55:44 3 :connect to server ok
... ...

2015/11/16 21:55:44 126 :connect to server ok
2015/11/16 21:55:44 127 :connect to server ok
2015/11/16 21:55:44 128 :connect to server ok

2015/11/16 21:55:52 129 :connect to server ok
2015/11/16 21:56:03 130 :connect to server ok
2015/11/16 21:56:14 131 :connect to server ok
... ...

可以看出Client初始时成功地一次性建立了128个连接,然后后续每阻塞近10s才能成功建立一条连接。也就是说在server端 backlog满时(未及时accept),客户端将阻塞在Dial上,直到server端进行一次accept。至于为什么是128,这与darwin 下的默认设置有关:

$sysctl -a|grep kern.ipc.somaxconn
kern.ipc.somaxconn: 128

如果我在ubuntu 14.04上运行上述server程序,我们的client端初始可以成功建立499条连接。

如果server一直不accept,client端会一直阻塞么?我们去掉accept后的结果是:在Darwin下,client端会阻塞大 约1分多钟才会返回timeout:

2015/11/16 22:03:31 128 :connect to server ok
2015/11/16 22:04:48 129: dial error: dial tcp :8888: getsockopt: operation timed out

而如果server运行在ubuntu 14.04上,client似乎一直阻塞,我等了10多分钟依旧没有返回。 阻塞与否看来与server端的网络实现和设置有关。

3、网络延迟较大,Dial阻塞并超时

如果网络延迟较大,TCP握手过程将更加艰难坎坷(各种丢包),时间消耗的自然也会更长。Dial这时会阻塞,如果长时间依旧无法建立连接,则Dial也会返回“ getsockopt: operation timed out”错误。


在连接建立阶段,多数情况下,Dial是可以满足需求的,即便阻塞一小会儿。但对于某些程序而言,需要有严格的连接时间限定,如果一定时间内没能成功建立连接,程序可能会需要执行一段“异常”处理逻辑,为此我们就需要DialTimeout了。下面的例子将Dial的最长阻塞时间限制在2s内,超出这个时长,Dial将返回timeout error:

//go-tcpsock/conn_establish/client3.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.DialTimeout("tcp", "104.236.176.96:80", 2*time.Second)
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")
}

执行结果如下(需要模拟一个延迟较大的网络环境):

$go run client3.go
2015/11/17 09:28:34 begin dial...
2015/11/17 09:28:36 dial error: dial tcp 104.236.176.96:80: i/o timeout

三、Socket读写

连接建立起来后,我们就要在conn上进行读写,以完成业务逻辑。前面说过Go runtime隐藏了I/O多路复用的复杂性。语言使用者只需采用goroutine+Block I/O的模式即可满足大部分场景需求。Dial成功后,方法返回一个net.Conn接口类型变量值,这个接口变量的动态类型为一个*TCPConn:

//$GOROOT/src/net/tcpsock_posix.go
type TCPConn struct {
    conn
}

TCPConn内嵌了一个unexported类型:conn,因此TCPConn”继承”了conn的Read和Write方法,后续通过Dial返回值调用的Write和Read方法均是net.conn的方法:

//$GOROOT/src/net/net.go
type conn struct {
    fd *netFD
}

func (c *conn) ok() bool { return c != nil && c.fd != nil }

// Implementation of the Conn interface.

// Read implements the Conn Read method.
func (c *conn) Read(b []byte) (int, error) {
    if !c.ok() {
        return 0, syscall.EINVAL
    }
    n, err := c.fd.Read(b)
    if err != nil && err != io.EOF {
        err = &OpError{Op: "read", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
    }
    return n, err
}

// Write implements the Conn Write method.
func (c *conn) Write(b []byte) (int, error) {
    if !c.ok() {
        return 0, syscall.EINVAL
    }
    n, err := c.fd.Write(b)
    if err != nil {
        err = &OpError{Op: "write", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
    }
    return n, err
}

下面我们先来通过几个场景来总结一下conn.Read的行为特点。


1、Socket中无数据

连接建立后,如果对方未发送数据到socket,接收方(Server)会阻塞在Read操作上,这和前面提到的“模型”原理是一致的。执行该Read操作的goroutine也会被挂起。runtime会监视该socket,直到其有数据才会重新
调度该socket对应的Goroutine完成read。由于篇幅原因,这里就不列代码了,例子对应的代码文件:go-tcpsock/read_write下的client1.go和server1.go。

2、Socket中有部分数据

如果socket中有部分数据,且长度小于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回,而不是等待所有期望数据全部读取后再返回。

Client端:

//go-tcpsock/read_write/client2.go
... ...
func main() {
    if len(os.Args) <= 1 {
        fmt.Println("usage: go run client2.go YOUR_CONTENT")
        return
    }
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    time.Sleep(time.Second * 2)
    data := os.Args[1]
    conn.Write([]byte(data))

    time.Sleep(time.Second * 10000)
}

Server端:

//go-tcpsock/read_write/server2.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        var buf = make([]byte, 10)
        log.Println("start to read from conn")
        n, err := c.Read(buf)
        if err != nil {
            log.Println("conn read error:", err)
            return
        }
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

我们通过client2.go发送”hi”到Server端:
运行结果:

$go run client2.go hi
2015/11/17 13:30:53 begin dial...
2015/11/17 13:30:53 dial ok

$go run server2.go
2015/11/17 13:33:45 accept a new connection
2015/11/17 13:33:45 start to read from conn
2015/11/17 13:33:47 read 2 bytes, content is hi
...

Client向socket中写入两个字节数据(“hi”),Server端创建一个len = 10的slice,等待Read将读取的数据放入slice;Server随后读取到那两个字节:”hi”。Read成功返回,n =2 ,err = nil。

3、Socket中有足够数据

如果socket中有数据,且长度大于等于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回。这个情景是最符合我们对Read的期待的了:Read将用Socket中的数据将我们传入的slice填满后返回:n = 10, err = nil。

我们通过client2.go向Server2发送如下内容:abcdefghij12345,执行结果如下:

$go run client2.go abcdefghij12345
2015/11/17 13:38:00 begin dial...
2015/11/17 13:38:00 dial ok

$go run server2.go
2015/11/17 13:38:00 accept a new connection
2015/11/17 13:38:00 start to read from conn
2015/11/17 13:38:02 read 10 bytes, content is abcdefghij
2015/11/17 13:38:02 start to read from conn
2015/11/17 13:38:02 read 5 bytes, content is 12345

client端发送的内容长度为15个字节,Server端Read buffer的长度为10,因此Server Read第一次返回时只会读取10个字节;Socket中还剩余5个字节数据,Server再次Read时会把剩余数据读出(如:情形2)。

4、Socket关闭

如果client端主动关闭了socket,那么Server的Read将会读到什么呢?这里分为“有数据关闭”和“无数据关闭”。

“有数据关闭”是指在client关闭时,socket中还有server端未读取的数据,我们在go-tcpsock/read_write/client3.go和server3.go中模拟这种情况:

$go run client3.go hello
2015/11/17 13:50:57 begin dial...
2015/11/17 13:50:57 dial ok

$go run server3.go
2015/11/17 13:50:57 accept a new connection
2015/11/17 13:51:07 start to read from conn
2015/11/17 13:51:07 read 5 bytes, content is hello
2015/11/17 13:51:17 start to read from conn
2015/11/17 13:51:17 conn read error: EOF

从输出结果来看,当client端close socket退出后,server3依旧没有开始Read,10s后第一次Read成功读出了5个字节的数据,当第二次Read时,由于client端 socket关闭,Read返回EOF error。

通过上面这个例子,我们也可以猜测出“无数据关闭”情形下的结果,那就是Read直接返回EOF error。

5、读取操作超时

有些场合对Read的阻塞时间有严格限制,在这种情况下,Read的行为到底是什么样的呢?在返回超时错误时,是否也同时Read了一部分数据了呢?这个实验比较难于模拟,下面的测试结果也未必能反映出所有可能结果。我们编写了client4.go和server4.go来模拟这一情形。

//go-tcpsock/read_write/client4.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    data := make([]byte, 65536)
    conn.Write(data)

    time.Sleep(time.Second * 10000)
}

//go-tcpsock/read_write/server4.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        time.Sleep(10 * time.Second)
        var buf = make([]byte, 65536)
        log.Println("start to read from conn")
        c.SetReadDeadline(time.Now().Add(time.Microsecond * 10))
        n, err := c.Read(buf)
        if err != nil {
            log.Printf("conn read %d bytes,  error: %s", n, err)
            if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
                continue
            }
            return
        }
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}

在Server端我们通过Conn的SetReadDeadline方法设置了10微秒的读超时时间,Server的执行结果如下:

$go run server4.go

2015/11/17 14:21:17 accept a new connection
2015/11/17 14:21:27 start to read from conn
2015/11/17 14:21:27 conn read 0 bytes,  error: read tcp 127.0.0.1:8888->127.0.0.1:60970: i/o timeout
2015/11/17 14:21:37 start to read from conn
2015/11/17 14:21:37 read 65536 bytes, content is

虽然每次都是10微秒超时,但结果不同,第一次Read超时,读出数据长度为0;第二次读取所有数据成功,没有超时。反复执行了多次,没能出现“读出部分数据且返回超时错误”的情况。


和读相比,Write遇到的情形一样不少,我们也逐一看一下。


1、成功写

前面例子着重于Read,client端在Write时并未判断Write的返回值。所谓“成功写”指的就是Write调用返回的n与预期要写入的数据长度相等,且error = nil。这是我们在调用Write时遇到的最常见的情形,这里不再举例了。

2、写阻塞

TCP连接通信两端的OS都会为该连接保留数据缓冲,一端调用Write后,实际上数据是写入到OS的协议栈的数据缓冲的。TCP是全双工通信,因此每个方向都有独立的数据缓冲。当发送方将对方的接收缓冲区以及自身的发送缓冲区写满后,Write就会阻塞。我们来看一个例子:client5.go和server.go。

//go-tcpsock/read_write/client5.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    data := make([]byte, 65536)
    var total int
    for {
        n, err := conn.Write(data)
        if err != nil {
            total += n
            log.Printf("write %d bytes, error:%s\n", n, err)
            break
        }
        total += n
        log.Printf("write %d bytes this time, %d bytes in total\n", n, total)
    }

    log.Printf("write %d bytes in total\n", total)
    time.Sleep(time.Second * 10000)
}

//go-tcpsock/read_write/server5.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    time.Sleep(time.Second * 10)
    for {
        // read from the connection
        time.Sleep(5 * time.Second)
        var buf = make([]byte, 60000)
        log.Println("start to read from conn")
        n, err := c.Read(buf)
        if err != nil {
            log.Printf("conn read %d bytes,  error: %s", n, err)
            if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
                continue
            }
        }

        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

Server5在前10s中并不Read数据,因此当client5一直尝试写入时,写到一定量后就会发生阻塞:

$go run client5.go

2015/11/17 14:57:33 begin dial...
2015/11/17 14:57:33 dial ok
2015/11/17 14:57:33 write 65536 bytes this time, 65536 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 131072 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 196608 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 262144 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 327680 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 393216 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 458752 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 524288 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 589824 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 655360 bytes in total

在Darwin上,这个size大约在679468bytes。后续当server5每隔5s进行Read时,OS socket缓冲区腾出了空间,client5就又可以写入了:

$go run server5.go
2015/11/17 15:07:01 accept a new connection
2015/11/17 15:07:16 start to read from conn
2015/11/17 15:07:16 read 60000 bytes, content is
2015/11/17 15:07:21 start to read from conn
2015/11/17 15:07:21 read 60000 bytes, content is
2015/11/17 15:07:26 start to read from conn
2015/11/17 15:07:26 read 60000 bytes, content is
....

client端:

2015/11/17 15:07:01 write 65536 bytes this time, 720896 bytes in total
2015/11/17 15:07:06 write 65536 bytes this time, 786432 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 851968 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 917504 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 983040 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 1048576 bytes in total
.... ...

3、写入部分数据

Write操作存在写入部分数据的情况,比如上面例子中,当client端输出日志停留在“write 65536 bytes this time, 655360 bytes in total”时,我们杀掉server5,这时我们会看到client5输出以下日志:

...
2015/11/17 15:19:14 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:19:16 write 24108 bytes, error:write tcp 127.0.0.1:62245->127.0.0.1:8888: write: broken pipe
2015/11/17 15:19:16 write 679468 bytes in total

显然Write并非在655360这个地方阻塞的,而是后续又写入24108后发生了阻塞,server端socket关闭后,我们看到Wrote返回er != nil且n = 24108,程序需要对这部分写入的24108字节做特定处理。

4、写入超时

如果非要给Write增加一个期限,那我们可以调用SetWriteDeadline方法。我们copy一份client5.go,形成client6.go,在client6.go的Write之前增加一行timeout设置代码:

conn.SetWriteDeadline(time.Now().Add(time.Microsecond * 10))

启动server6.go,启动client6.go,我们可以看到写入超时的情况下,Write的返回结果:

$go run client6.go
2015/11/17 15:26:34 begin dial...
2015/11/17 15:26:34 dial ok
2015/11/17 15:26:34 write 65536 bytes this time, 65536 bytes in total
... ...
2015/11/17 15:26:34 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:26:34 write 24108 bytes, error:write tcp 127.0.0.1:62325->127.0.0.1:8888: i/o timeout
2015/11/17 15:26:34 write 679468 bytes in total

可以看到在写入超时时,依旧存在部分数据写入的情况。


综上例子,虽然Go给我们提供了阻塞I/O的便利,但在调用Read和Write时依旧要综合需要方法返回的n和err的结果,以做出正确处理。net.conn实现了io.Reader和io.Writer接口,因此可以试用一些wrapper包进行socket读写,比如bufio包下面的Writer和Reader、io/ioutil下的函数等。

Goroutine safe

基于goroutine的网络架构模型,存在在不同goroutine间共享conn的情况,那么conn的读写是否是goroutine safe的呢?在深入这个问题之前,我们先从应用意义上来看read操作和write操作的goroutine-safe必要性。

对于read操作而言,由于TCP是面向字节流,conn.Read无法正确区分数据的业务边界,因此多个goroutine对同一个conn进行read的意义不大,goroutine读到不完整的业务包反倒是增加了业务处理的难度。对与Write操作而言,倒是有多个goroutine并发写的情况。不过conn读写是否goroutine-safe的测试不是很好做,我们先深入一下runtime代码,先从理论上给这个问题定个性:

net.conn只是*netFD的wrapper结构,最终Write和Read都会落在其中的fd上:

type conn struct {
    fd *netFD
}

netFD在不同平台上有着不同的实现,我们以net/fd_unix.go中的netFD为例:

// Network file descriptor.
type netFD struct {
    // locking/lifetime of sysfd + serialize access to Read and Write methods
    fdmu fdMutex

    // immutable until Close
    sysfd       int
    family      int
    sotype      int
    isConnected bool
    net         string
    laddr       Addr
    raddr       Addr

    // wait server
    pd pollDesc
}

我们看到netFD中包含了一个runtime实现的fdMutex类型字段,从注释上来看,该fdMutex用来串行化对该netFD对应的sysfd的Write和Read操作。从这个注释上来看,所有对conn的Read和Write操作都是有fdMutex互斥的,从netFD的Read和Write方法的实现也证实了这一点:

func (fd *netFD) Read(p []byte) (n int, err error) {
    if err := fd.readLock(); err != nil {
        return 0, err
    }
    defer fd.readUnlock()
    if err := fd.pd.PrepareRead(); err != nil {
        return 0, err
    }
    for {
        n, err = syscall.Read(fd.sysfd, p)
        if err != nil {
            n = 0
            if err == syscall.EAGAIN {
                if err = fd.pd.WaitRead(); err == nil {
                    continue
                }
            }
        }
        err = fd.eofError(n, err)
        break
    }
    if _, ok := err.(syscall.Errno); ok {
        err = os.NewSyscallError("read", err)
    }
    return
}

func (fd *netFD) Write(p []byte) (nn int, err error) {
    if err := fd.writeLock(); err != nil {
        return 0, err
    }
    defer fd.writeUnlock()
    if err := fd.pd.PrepareWrite(); err != nil {
        return 0, err
    }
    for {
        var n int
        n, err = syscall.Write(fd.sysfd, p[nn:])
        if n > 0 {
            nn += n
        }
        if nn == len(p) {
            break
        }
        if err == syscall.EAGAIN {
            if err = fd.pd.WaitWrite(); err == nil {
                continue
            }
        }
        if err != nil {
            break
        }
        if n == 0 {
            err = io.ErrUnexpectedEOF
            break
        }
    }
    if _, ok := err.(syscall.Errno); ok {
        err = os.NewSyscallError("write", err)
    }
    return nn, err
}

每次Write操作都是受lock保护,直到此次数据全部write完。因此在应用层面,要想保证多个goroutine在一个conn上write操作的Safe,需要一次write完整写入一个“业务包”;一旦将业务包的写入拆分为多次write,那就无法保证某个Goroutine的某“业务包”数据在conn发送的连续性。

同时也可以看出即便是Read操作,也是lock保护的。多个Goroutine对同一conn的并发读不会出现读出内容重叠的情况,但内容断点是依 runtime调度来随机确定的。存在一个业务包数据,1/3内容被goroutine-1读走,另外2/3被另外一个goroutine-2读 走的情况。比如一个完整包:world,当goroutine的read slice size < 5时,存在可能:一个goroutine读到 “worl”,另外一个goroutine读出”d”。

四、Socket属性

原生Socket API提供了丰富的sockopt设置接口,但Golang有自己的网络架构模型,golang提供的socket options接口也是基于上述模型的必要的属性设置。包括

  • SetKeepAlive
  • SetKeepAlivePeriod
  • SetLinger
  • SetNoDelay (默认no delay)
  • SetWriteBuffer
  • SetReadBuffer

不过上面的Method是TCPConn的,而不是Conn的,要使用上面的Method的,需要type assertion:

tcpConn, ok := c.(*TCPConn)
if !ok {
    //error handle
}

tcpConn.SetNoDelay(true)

对于listener socket, golang默认采用了 SO_REUSEADDR,这样当你重启 listener程序时,不会因为address in use的错误而启动失败。而listen backlog的默认值是通过获取系统的设置值得到的。不同系统不同:mac 128, linux 512等。

五、关闭连接

和前面的方法相比,关闭连接算是最简单的操作了。由于socket是全双工的,client和server端在己方已关闭的socket和对方关闭的socket上操作的结果有不同。看下面例子:

//go-tcpsock/conn_close/client1.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    conn.Close()
    log.Println("close ok")

    var buf = make([]byte, 32)
    n, err := conn.Read(buf)
    if err != nil {
        log.Println("read error:", err)
    } else {
        log.Printf("read % bytes, content is %s\n", n, string(buf[:n]))
    }

    n, err = conn.Write(buf)
    if err != nil {
        log.Println("write error:", err)
    } else {
        log.Printf("write % bytes, content is %s\n", n, string(buf[:n]))
    }

    time.Sleep(time.Second * 1000)
}

//go-tcpsock/conn_close/server1.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()

    // read from the connection
    var buf = make([]byte, 10)
    log.Println("start to read from conn")
    n, err := c.Read(buf)
    if err != nil {
        log.Println("conn read error:", err)
    } else {
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }

    n, err = c.Write(buf)
    if err != nil {
        log.Println("conn write error:", err)
    } else {
        log.Printf("write %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

上述例子的执行结果如下:

$go run server1.go
2015/11/17 17:00:51 accept a new connection
2015/11/17 17:00:51 start to read from conn
2015/11/17 17:00:51 conn read error: EOF
2015/11/17 17:00:51 write 10 bytes, content is

$go run client1.go
2015/11/17 17:00:51 begin dial...
2015/11/17 17:00:51 close ok
2015/11/17 17:00:51 read error: read tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection
2015/11/17 17:00:51 write error: write tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection

从client1的结果来看,在己方已经关闭的socket上再进行read和write操作,会得到”use of closed network connection” error;
从server1的执行结果来看,在对方关闭的socket上执行read操作会得到EOF error,但write操作会成功,因为数据会成功写入己方的内核socket缓冲区中,即便最终发不到对方socket缓冲区了,因为己方socket并未关闭。因此当发现对方socket关闭后,己方应该正确合理处理自己的socket,再继续write已经无任何意义了。

六、小结

本文比较基础,但却很重要,毕竟golang是面向大规模服务后端的,对通信环节的细节的深入理解会大有裨益。另外Go的goroutine+阻塞通信的网络通信模型降低了开发者心智负担,简化了通信的复杂性,这点尤为重要。

本文代码实验环境:go 1.5.1 on Darwin amd64以及部分在ubuntu 14.04 amd64。

本文demo代码在这里可以找到。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats