标签 调试 下的文章

当Bug A遇到Bug B

2002年的Bug A与2008年的Bug B同时穿越到2013年,并在某个场合相遇了。

上周六,项目组本应以一个愉快的心情结束一天的工作的,但一个2002年的Bug A与另外一个2008年的Bug B同时穿越时空来到了2013年,并且恰恰在那时那刻(下班前)相遇了,于是项目组由放松变成了忙碌,由愉快变成了紧张,17:30的下班点也因此延迟到了凌晨1:30。

Bug A来源于2002年我们发布给客户的一版客户端API,严格来说称其为Bug不免有些冤,它只是遇到Bug B时才会被触发,其只是在处理机制上缺少一些容错的考虑罢了。Bug B才是名副其实的Bug,居然明目张胆地违反协议,擅自在登录应答包的Body尾部补了一个字节的“脏数据“,导致使用我们客户端API的某企业短信通知系统出现故障。

关于这次的“故障”,我想感慨的不是这次的Bug有多么的诡异难找,而是下面这几点:

* 生产环境中场景的复杂性与多样性

任你用例再多,测试人员经验再丰富,脑力再强大,也很难设想出如此之情形。往往我们在模拟环境中测试的都很好,开发和测试人员都手拍胸脯保证说:“没问题了”。但一到生产环境中,问题就像滚雪球一样越来越多,弄得大家焦头烂额。究其源头还是在开发人员这里,开发人员是第一责任人。已经离职的制造出这两个Bug的“前辈们“肯定不会想到,他们的Bug居然穿越到2013年相遇了,否则我相信他们在当时一定会认真对待代码的。

* Bug是藏不住的

通过此例可以让我们看到:Bug终有一天是会暴露的,是藏不住的。这“潜伏”了10多年的问题不也在这次事件中暴露出来了吗。所以说我们写代码的时候,一定要心中有“追求0bug”的理想和目标,严格要求自己和自己的代码,采用各种手段,如代码评审单元测试持续集成、自动化的模拟环境验收测试等对所写代码进行“残酷”的打磨和考验,让Bug遛到生产环境的机会尽可能地小。

* 版本的变更管理有漏洞

这又是一次在产品升级后导致的“故障”,原因在于没能完整的识别出这次升级带来的所有软件变更。其少引发Bug B的那行代码的“作用”没能识别出来。这的确是个难题,如果不是原开发人员或评审人员“自发”上报此处的变更,这个变更太容易淹没在代码海洋中而丢失了。目前似乎也没有太好的办法。如果未来能有一种自动识别版本间代码不同且能识别出差异代码的语义变更的工具,那么我相信这款工具一定大卖。 

跨过BUG查找的”最后一公里”

如果你看到一个C程序员在通宵熬夜神情紧张地对着电脑敲代码或阅读代码,多数只有两种可能:一是为了赶进度;二就是查找内存Bug。
                                                                                                                              — 个人感悟
 
昨晚搞到凌晨一点多,终于算是把一个棘手的Bug的来龙去脉搞清楚了。截至到今天,这个Bug已经困扰了项目组两个核心开发同事达三周之久了。

这个Bug的确很难查找:

   – 首先模拟环境下无法复现该Bug;
   – 生产环境下该Bug是随机出现的,发生频率十分低;
   – Bug出现时并未有dump core等明显异常现象出现,系统依旧运行良好。

得到Bug报告后,我的两位同事就开始对bug引发的问题现象进行了分析,得出了内存被污染的初步结论。之后又在生产环境做了GDB attach到进程的调试,甚至替换了生产环境的版本,利用传统的print语句在关键路径上输出提示信息,试图找到引发Bug的真正原因。但做过这些 后,所能得到的结论依旧停留在内存被污染,至于怎么被污染的、在哪个业务流程上被污染的却无从得知。无奈之下,两位同事开始根据 subversion的commit history进行代码比对和分析,试图查找到哪些新增或修改的代码引发了Bug。代码修改量小还好,如果修改数量巨大,这种代码比对就好比大海捞针,我 们无法保证注意力自始自终是集中的,结果两位同事也的确没有从代码变更中发现什么蛛丝马迹。这类Bug会让你有一种有力无处施展的感觉,面对这样 的Bug,我的两位开发人员似乎也失去了信心和思路。

下面简要描述一下这个Bug:

有这样一个字段数目众多的结构体foo_t,这里仅列出bug相关的几个字段e、c、flag、pdata:

struct foo_t {
    … …
    char e[XX_SIZE];
    char c[XX_SIZE];
    char flag;
    data_t *pdata;
    … …
};

业务逻辑是:

if (flag) {
    处理e、c两个字段;
}

   
bug现象:值本是1的flag字段被污染,值变成了0,导致e、c两个字段没有被做处理,从而引发业务异常,导致客户投诉。我的同事曾经做过如 下尝试,以确定内存污染的行为特点,她在flag之前又加了一个字段flag1:

struct foo_t {
    … …
    char e[XX_SIZE];
    char c[XX_SIZE];
    unsigned int flag1;
    char flag;
    data_t *pdata;
    … …
};

在生产环境下运行得到的结果是flag1和flag值正常,但字段c的尾部字节遭到了污染。现象已经十分明确,离真相就差那最后一公里了。

对于上面的内存污染问题,我首先会怀疑在处理flag或c之前的字段时出现了缓冲区溢出,导致后面字段的内容被整体或局部覆盖。不过从bug现象 来看,这个思路也有说不通的地方,那就是为何是c的尾部字段被污染,而不是从头部开始呢?不过我们依旧沿着这个思路追查了e以及e的诸多前驱字 段,细致的分析了代码,但没有发现溢出点。

c或flag的后继字段比如pdata要想污染c或flag则必须具备更多条件,至少要有操作&pdata的代码,之前基本认为这不太可 能。但现在仅有这一条路可以继续走下去了,也只能沿着这条路走下去。事实证明我们走的没错。在后续的处理流程中有这样的一个函数:

int func(void *p, int size)

这个函数本来是用于处理data_t*变量的,但由于编码者的疏忽,将&pdata传给了p,另外size这个参数也传了一个错误的值, 估计是滥用了copy&paste。而func函数体中对p指向的内存地址做了修改,这个修改直接污染了 ((char*)&pdata + size)起始的那片内存块儿,这就是问题的真正原因所在。这样看来pdata并未污染其所在的foo_t实例中的flag或c字段,而是污染了其他foo_t实例中的flag或c字段,因为这些实例都放在一个mem block pool中的,所以这还是一个随机的远距离内存污染^_^。

我走完了BUG查找的最后那一公里,到达了终点。这个BUG的查找确实不易,但并非遥不可及,为何我的两位同事就停在离真相只有一公里的地方而踌 躇不前了呢?对此我也做了一些考量,希望能在日后的BUG查找方面给予帮助。

要跨过BUG查找的那最后一公里,可从如下几个方面着手努力:

* 收罗证据,不放过一处可疑之处

这是准备工作,就好比警察查看罪案现场,哪怕是一根毛发,一处异物也不能放过。一般来说我们至少要收集到Bug发生时的各方面信息,包括:

 - 系统日志
        这个时间点上各个模块的日志都要搜罗到;

 - core文件
        如果bug引发core dump,那core文件是bug查找的最佳入口;

 - 通信数据包内容
        对于很多后端服务程序而言,不合法的通信数据包常常会引发Bug,我经手的类似Bug就不止一起了。必要时通过抓包工具将通信包抓到文件中以备后用。

 - CPU/内存/磁盘实时状况
       千万不要小视这些信息。如果发现CPU过高,则很可能代码存在死循环的可能(后pstack进程号,则可直接找到问题所在);如果磁盘满,则可以很好解释 数据不完整的异常;如果mem占用过高,则可以解释分配内存异常或性能下降等问题。

 - 系统操作日志
       如果有管理员的操作行为的话,我们也不要放过,将操作日志(一般系统都有保存,并需要对这些日志进行定期审核)截取并保留,以备后用。

 - 操作系统/硬件相关异常信息等。
       如果是因为OS或硬件异常导致的Bug,那搜集到这些信息就太重要了,否则你将付出惨重的Bug查找代价。

Bug查多了你就会有这种感悟:证据用时方恨少啊!

* 沉下心,保持清晰思路

BUG有难有易,简单的Bug大家都能应付,而困难的Bug,就要比拼能力和经验了。要想解决掉Bug,务必要沉下心,不急不躁,这是保持大脑始 终有清晰思路的前提。

能用工具(比如GDB)调试出来的Bug,都不是最难的问题,因为现场就摆在你的面前,你可以看到一切蛛丝马迹。最难的问题最终都是要通过脑力分 析出来的。

解决问题前,要根据之前搜罗的证据,形成自己的查找思路。没有思路是可怕的。没有思路的时候,也不要急于开始查,那样只会乱套。应根据已有的蛛丝 马迹,行成一些思路,哪怕这个思路你自己都不是很肯定,先按这个思路做做看,也许走出一步后,你又能收获新的信息,形成新的思路。就这样敏捷地向 前进,边向前探索边定期回顾。

* 知晓原理,缩小查找范围,形成正确思路

要保持清晰正确的思路,开发人员对系统的运行原理要做到十分清楚,这样可以缩小查找范围,重点突破。就好比上面的那个bug例子,我们要知道 c/flag被污染有几种潜在的可能,并形成多种思路,然后沿着这几种可能的思路继续走下去。在这次查找过程中,想必两位同事恰恰是在原理这方面 没有理解透彻吧。

* 质疑,从自己的代码开始

查Bug就要抛弃“不可能”,拥抱“质疑一切”。而质疑要从自己的代码开始。程序员或多或少都有一种“自负”的心态,骨子里会认为自己的代码肯定 是正确的。如果出现问题,一定是其他人代码的问题,哪怕是OS这样总体来说十分稳定的平台也会成为被首先质疑的对象。不过事实证明,错误多出在我 们自己的代码中,毫无理由的去怀疑操作系统、怀疑你使用的第三方库,多半会南辕北辙,浪费你宝贵的查找时间。

* 拥抱调试技巧和工具

必要的调试技巧是Bug查找的基本功底,这些技巧在涉及内存问题查找过程中相当有用。

  — print语句
        不用多说,print语句是最简单、最常用的调试手段,在代码任意位置,根据你的需要,输出信息,帮助你分析bug原因。其唯一的缺点就是可能需要你重新 build代码和部署你的应用。

  — gdb切入进程地址空间查看堆栈
         利用gdb一类的专用调试工具可在代码运行时切入进程地址空间,实时查看数据变化。你也可以在gdb下执行应用,获得同样的效果(适合单进程应用)。
 
  — 调试版中采用magic number + assert
         C程序的bug多为内存问题。常见的内存越界访问或污染的调试手段是在代码中为内存块添加magic number,并在特定环节用assert保证该magic number的值是没有被修改的。一旦值改变了,则说明问题发生在执行流的两次assert之间的某个地方,后续可进一步缩小assert间隙,直到定位 到问题。

  — 让bug尽可能的容易复现
         一个可以在模拟环境下复现的Bug总是比较好查的。出于这个考虑,我们可通过放大问题区域来尽可能更容易的复现bug,比如将一个字节的字段改为4个字 节,这样可能占据更多被污染的区域,比较利于Bug的复现(但这不总是ok的)。

* 把握节奏,避免陷入惯性思维

一些比较难fix的Bug,其查找过程可能会十分漫长,就像这次我们遇到的这个问题。这就需要我们的开发人员把握好Bug查找的节奏,因为长时间 调试和查问题容易让人陷入惯性思维,反倒不利于Bug的查找。一旦意识到自己进入惯性思维后,可考虑换种活动做做,比如出去散散步、洗个热水澡 等。或者给其他人员讲解你的查找思路,这个过程中自己可能会发现思路上的缺陷,或者由他人指出你思路方面的问题。

感觉Bug查找是一门手艺活,要学会慢工出细活,这总比不出活儿的要好,尤其是在面对那些十分诡异的内存Bug时。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats