标签 编译器 下的文章

三谈内存对齐-背后的故事

记得以前曾经两次谈到过内存对齐话题,一次在'也谈内存对齐'一文中,另一次则是'也谈内存对齐(续)',今天下午和同事又谈到内存对齐的问题了,遂想继续挖掘下去,看看其背后的故事。

关于内存对齐的中文文章多在介绍对齐的'法则',比如为什么sizeof(T)和我们估计的T的大小有出入呢等等,而对于内存对齐的本质少有介绍,我在Google上搜索了一阵后,在IBM开发社区上发现一篇叫'Data alignment: Straighten up and fly right'的文章,其中就有我想知道的关于'内存对齐背后的故事',下面的很多内容都是来自那篇文章的。

很多书籍中都讲到:内存可以看成一个byte数组,我们通过编程语言提供的工具对这个'大数组'中的每个元素进行读写,比如在C中我们可以用指针一次读写一个或者更多个字节,这是我们一般程序员眼中的内存样子。但是从机器角度更具体的说从CPU角度看呢,CPU发出的指令是一个字节一个字节读写内存吗?答案是'否'。CPU是按照'块(chunk)'来读写内存的,块的大小可以是2bytes, 4bytes, 8bytes, 16bytes甚至是32bytes. 这个CPU访问内存采用的块的大小,我们可以称为'内存访问粒度'。

程序员眼中的内存样子:

———————————
| | | | | | | | | | | | | | | | |
———————————
 0 1 2 3 4 5 6 7 8 9 A B C D E F  (地址)

CPU眼中的内存样子:(以粒度=4为例)
———————————————
| | | | |   | | | | |   | | | | |   | | | | |
———————————————
 0 1 2 3     4 5 6 7     8 9 A B     C D E F  (地址)

有了上面的概念,我们来看看粒度对CPU访问内存的影响。

假设这里我们需要的数据分别存储于地址0和地址1起始的连续4个字节的存储器中,我们目的是分别读取这些数据到一个4字节的寄存器中,

如果'内存访问粒度'为1,CPU从地址0开始读取,需要4次访问才能将4个字节读到寄存器中;
同样如果'内存访问粒度'为1,CPU从地址1开始读取,也需要4次访问才能将4个字节读到寄存器中;而且对于这种理想中的''内存访问粒度'为1的CPU,所有地址都是'aligned address'。

如果'内存访问粒度'为2,CPU从地址0开始读取,需要2次访问才能将4个字节读到寄存器中;每次访存都能从'aligned address'起始。
如果'内存访问粒度'为2,CPU从地址1开始读取,相当于内存中数据分布在1,2,3,4三个地址上,由于1不是'aligned address',所以这时CPU要做些其他工作,由于这四个字节分步在三个chunk上,所以CPU需要进行三次访存操作,第一次读取chunk1(即地址0,1上两个字节,而且仅仅地址1上的数据有用),第二次读取chunk2(即地址2,3上两个字节,这两个地址上的数据都有用),最后一次读取chunk3(即地址5,6上两个字节,而且仅仅地址5上的数据有用),最后CPU会将读取的有用的数据做merge操作,然后放到寄存器中。

同理可以推断如果'内存访问粒度'为4,那么从地址1开始读取,需要2次访问,访问后得到的结果merge后放到寄存器中。

是不是所有的CPU都会帮你这么做呢,当然不是。有些厂商的CPU发现你访问unaligned address,就会报错,或者打开调试器或者dump core,比如sun sparc solaris绝对不会容忍你访问unaligned address,都会以一个core结束你的程序的执行。所以一般编译器都会在编译时做相应的优化以保证程序运行时所有数据都是存储在'aligned address'上的,这就是内存对齐的由来。

我们可以指定按照何种粒度访问特定内存块儿:其中void *T为指向特定内存块的地址指针
char *p = (char*)T;每次操作一个字节
short *p = (short*)T;每次操作两个字节
int *p = (int*)T;每次操作4个字节
以此类推。

在'Data alignment: Straighten up and fly right'这篇文章中作者还得出一个结论那就是:"如果访问的地址是unaligned的,那么采用大粒度访问内存有可能比小粒度访问内存还要慢"。

也谈内存对齐(续)

关于内存对齐的话题,始终是敏感的。稍有不慎,必将闯下大祸!最近项目稍显轻闲,自己给自己安排一天反思和总结一下,突然想到以前写过的一篇'也谈内存对齐',那篇文章谈的是内存对齐的基本知识以及一些实验的数据,想必很多人看完后,会收获一些东西,但是对内存对齐的应用还是处于懵懂状态,其实大部分时间我们是不会显式的用到'内存对齐的',但是有些时候我们需要这样做。这里做了一个小例子,希望能给大家以启发。

例子是这样的:我们有一种二进制文件,其中存储了多条经过特定对齐的某种记录格式的数据,我们的任务就是解析出来这些数据,但是我们不知道也没有这种数据的记录格式结构的定义,但我们不是一无所有,我们有一个表,这个表描述了这个记录格式中有哪些域以及这些域的类型信息,我们还知道的是源数据的对齐系数。

叙述完问题后,我们来给出一些具体的东西:

二进制文件生成程序:
#pragma pack(1)
struct foo_t {
        int     a;
        char    b[25];
        int     c;
};
#pragma pack()

int main() {
        FILE            *fp     = NULL;
        struct foo_t    foo1    = {12457, "test foo1", 75421};
        struct foo_t    foo2    = {36098, "test foo2", 89063};

        fp = fopen("foo.dat", "wb+");
        if (fp == NULL) {
                printf("error in open foo.dat!\n");
        }

        fwrite(&foo1, sizeof(foo1), 1, fp);
        fwrite(&foo2, sizeof(foo2), 1, fp);

        fclose(fp);

        return 0;
}

生成的待解析文件:foo.dat,其中有两条记录。

好了,我们的任务已经很明确了,就是正确解析出这两条记录。如果解析程序知道有下面这样的结构体定义:
#pragma pack(1)
struct foo_t {
        int     a;
        char    b[25];
        int     c;
};
#pragma pack()
那这里也就不用说废话了,我们不知道这个结构定义,不过我们通过知道的一些信息可以整理出一个描述该结构定义的一个表:

#define X_CHAR          1
#define X_STRING        2
#define X_INT           3

typedef struct x_fld_info_t {
        char    name[MAX_FIELD_NAME_LEN];
        int     type;
        int     nitems;
        int     offset;
} x_fld_info_t;

x_fld_info_t    cpi_type_info_tab[3] = { /* cpi – composite */
        {"a", X_INT, 1, -1},
        {"b", X_STRING, 25, -1},
        {"c", X_INT, 1, -1}
};

想一想,我们能从文件foo.dat中读出来什么?仅仅是一块数据,每次读多大一块?如何在这块数据中找到相应的域呢?没错,我们需要通过cpi_type_info_tab这个表信息得出每条foo_t记录的大小,还要得到foo_t中每个域在这块数据中的偏移量,然后根据偏移量和域自身大小准确获取其内容。

好了终于要用到内存对齐的知识了,其实想想也知道foo.dat的文件生成程序和我们的解析程序可能不在一台机器上,而且完全可能在体系结构不同的机器上,这样不同体系结构的机器他们的默认对齐系数、字节序都可能不同(这里我们暂不考虑字节序的问题),我们在文件生成程序那边强制指定对齐系数有利于解析程序这边的解析。我们要做的就是根据已知的对齐系数和cpi_type_info_tab表中的信息计算出来该结构体在特定对齐系数下的总大小以及其各个域的偏移量。下面的宏X_ROUND_UP和函数align_cpi_type配合完成了这一工作:

int x_atom_type_size[4] = {
        -1,                 // 从下表1开始有意义
        sizeof(char),    // 对应X_CHAR的原子类型的size
        sizeof(char),    // 对应X_STRING的原子类型的size
        sizeof(int)       // 对应X_INT的原子类型的size
};

static int lg2(int k) { /* 求k以2为底的对数值,这里假设k一定为2的次方^_^ */
        int     i = 0;

        while ((k /= 2) != 0) {
                i++;
        }
        return i;
}

#define X_ROUND_UP(x, k, rv) do { \
                unsigned int t = (-1 << k); \
                (rv) = ((x – t – 1) & t); \
        } while(0)  /* 将x向上圆整到2的k次幂的倍数 */

static void align_cpi_type(x_fld_info_t *tab, int fld_cnt, int force_align_mod, int *size) {
        int     i       = 0;
        int     cur     = 0;
        int     rv      = 0;
        int     max_sz  = 0; /* 复合类型各个域中的最大原子类型的长度, 用于对齐整个结构 */
        int     atom_sz = 0; /* 域的原子类型 */
        int     ali_mod = 0; /* alignment modules */

        /*
         * 对齐各个域
         */
        for (i = 0; i < fld_cnt; i++) {
                atom_sz = x_atom_type_size[tab[i].type];
                if (max_sz < atom_sz) {
                        max_sz = atom_sz;
                }

                if (atom_sz < force_align_mod) {
                        ali_mod = atom_sz;
                } else {
                        ali_mod = force_align_mod;
                }

                X_ROUND_UP(cur, lg2(ali_mod), rv);
                tab[i].offset = rv;
                cur = tab[i].offset; /* 这一句代码还要感谢一位留名为"十年草木"的网友的提醒 */
                cur += (atom_sz * (tab[i].nitems));
        }

        /*
         * 对齐整个复合类型
         */
        if (max_sz < force_align_mod) {
                ali_mod = max_sz;
        } else {
                ali_mod = force_align_mod;
        }

        X_ROUND_UP(cur, lg2(ali_mod), rv);
        (*size) = rv;
}

如果对内存对齐还有疑惑的,可以去看看我的那篇'也谈内存对齐',再回到这来看align_cpi_type的实现,这里的X_ROUND_UP的算法借自于'Hacker's Delight'一书,很好的一本讨论'Computer Arithmetic'的书,里面的很多Knowledge & Tip很有价值。通过align_cpi_type函数我们既得到了结构的大小也得到了结构中各个域的偏移量。根据这些信息我们就可以输出文件foo.dat中的数据了。

static void output_cpi_mem(x_fld_info_t *tab, int fld_cnt, char *buf)
{
        int     i = 0;
        int     int_tmp = 0;
        char    str_tmp[50]; /* 这里仅是举例, 所以使用了一个固定大小的缓冲区, 实际上需要做一个可动态扩展的缓冲区 */

        for (i = 0; i < fld_cnt; i++) {
                if (tab[i].type == X_STRING) {
                        memset(str_tmp, 0, sizeof(str_tmp));
                        memcpy(str_tmp, (char*)(buf+(tab[i].offset)), x_atom_type_size[tab[i].type] * (tab[i].nitems));
                        printf("the value of field '%s' is [%s]\n”, tab[i].name, str_tmp);
                } else if (tab[i].type == X_INT) {
                        memcpy(&int_tmp, (char*)(buf+(tab[i].offset)), x_atom_type_size[tab[i].type] * (tab[i].nitems));
                        printf("the value of field '%s' is [%d]\n”, tab[i].name, int_tmp);
                }
        }
}

int main() {
        x_fld_info_t    cpi_type_info_tab[3] = { /* cpi – composite */
                {"a", X_INT, 1, -1},
                {"b", X_STRING, 25, -1},
                {"c", X_INT, 1, -1}
        };

        int     size = 0;
        int     i    = 0;

        align_cpi_type(cpi_type_info_tab, sizeof(cpi_type_info_tab)/sizeof(cpi_type_info_tab[0]), modules, &size);

        /*
         * 从文件foo.dat中读出所有记录
         * 并打印出来
         */
        FILE    *fp     = NULL;
        char    buf[50];

        fp = fopen("foo.dat", "r");
        if (fp == NULL) {
                printf("error in fopen!\n");
        }

        for (i = 0; i < 2; i++) { /* 这里偷了个懒儿,直接用2这个记录的个数了 */
                memset(buf, 0, sizeof(buf));
                fread(buf, size, 1, fp);

                /*
                 * 通过cpi_type_info_tab中的信息打印出
                 * 各个字段的值
                 */
                output_cpi_mem(cpi_type_info_tab, 3, buf);
        }

        fclose(fp);

        return 0;
}

执行输出:
the value of field 'a' is [12457]
the value of field 'b' is [test foo1]
the value of field 'c' is [75421]
the value of field 'a' is [36098]
the value of field 'b' is [test foo2]
the value of field 'c' is [89063]

看到这有些人可能还是很糊涂,到底为什么要这么做呢?提示一下:现在我们要解析一存储未知类型数据的文件的记录时,我们只需要这个纪录的一些描述信息即可了,而无需知道那个foo_t的具体定义了。能不能理解就看你自己了。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats