标签 程序员 下的文章

致敬:程序员成长路上的良师与经典著作

本文永久链接 – https://tonybai.com/2024/09/10/programmer-mentors-and-their-classic-works

早上送孩子去幼儿园的路上,收到一个小伙伴的微信:

我这才意识到今天是教师节!为人师,自觉还不够格!但在这个特殊的日子,作为IT行业从业人员,我想向那些在计算机科学和编程领域给予我们启迪的“老师们”致敬。这些老师可能不是传统意义上站在讲台前的教育者,但他们通过自己的著作、思想和贡献,通过他们的智慧结晶,为我们指明了方向,为无数程序员的成长之路点亮了明灯。

这里我列举的作者与其著作也都是我个人从大学开始至今在计算机编程学习和实践之路上受到深刻影响的重要参考资料。这些书籍不仅丰富了我的知识,也激发了我对编程的热情和探索精神。每一位作者的独特视角和深入浅出的讲解,都让我在理解复杂概念时受益匪浅。希望也能引起大家的共鸣。

注:计算机领域巨匠甚多,笔者见识有限,不能一一列举,这里仅列出我亲自读过且对我影响深远的作者及其代表作品,至于像唐纳德·克努斯和他的巨著《计算机程序设计艺术》等,由于我并未拜读过,这里也就没有列出。

注:书中的图书封面图片可能并非该书最新版的封面,而是笔者购买时的版本的封面图片。

2. 编程语言

2.1 C语言/Go语言领域

2.1.1 Dennis Ritchie

大一的时候学校开设了C语言编程课,指定谭浩强老师的《C程序设计(第二版)》作为随课教材,当时我特意到大学书店花了银子买了本,并奉为皋臬。

直到我看到清华出版的影印版《C程序设计语言(第二版)》,才发现自己天真了,这本才是真正的“圣经”!

Dennis Ritchie,被誉为”C语言之父”,1983年图灵奖得主(与Ken Thompson同年获得)。他不仅创造了C语言,还与Ken Thompson一起开发了UNIX操作系统。刚刚过去的9月9日是其诞辰纪念日,MIT CSAIL在X上发文纪念了这位计算机先驱和现代编程语言奠基人:

他与Brian Kernighan合著的《The C Programming Language》被亲切地称为“K&R C”,是学习C语言的必读经典,书籍不厚,它以简洁明了的语言介绍了C语言的核心概念(遵循当时的ANSI C89/C90标准),影响了几代程序员。

2.1.2 Brian Kernighan

说完K&R中的R,我们再来说K。K指的是Brian Kernighan,他也是Bell实验室UNIX开发团队的重要成员,是C语言的主要推广者之一,他也是AWK语言中的最后的那个K。和Dennis Ritchie等动不动就是语言之父不同,Kernighan以写作风格闻名。他的写作风格清晰易懂,使复杂的概念变得平易近人,并以一种易于理解和应用的方式呈现给读者。这使得与Dennis Ritchie合著的《C程序设计语言》不仅是C语言语言特性的权威指南,更是编程语言类书籍技术写作的典范,之后很多编程语言类的书籍都参考Kernighan的风格,至少也会先从一个“Hello, World”开始全书的讲解。

其与P.J.Plauger合著的《The Elements of Programming Style》也是程序员眼中的经典。

2015年,已经70高龄的Kernighan又和Go团队的Alan Donovan合著了Go语言编程书籍领域公认的圣经《The Go Programming Language》。这本书与K&R C的风格很相似,作者们以清晰简洁的语言,系统且全面地介绍了Go的语法特性和编程理念,并通过大量的实例展示了Go在实际项目中的应用。书中不仅覆盖了基础知识,还深入探讨了并发编程、unsafe编程等Go高级主题。

2.2 C++

2.2.1 Bjarne Stroustrup

Bjarne Stroustrup是C++语言之父,他从1979年开始,在C语言的基础上添加了面向对象编程等特性,从而创造了C++这门强大而灵活的通用编程语言。C++经过ISO标准化后,他也是C++标准委员会的创始成员,并从那时起一直是一名活跃成员。如今,他还担任负责处理语言扩展提案的小组(进化工作组)的主席。

Bjarne Stroustrup的著作也是我入门和深入C++的必读经典,其中《C++程序设计语言》被认为是C++语言的”圣经”。Stroustrup以语言之父的口吻在书中详细介绍了C++的语言特性、抽象机制、标准库与设计理念。它不仅是一本语言参考,更是理解C++哲学的重要资源。

我是从高教影印版的《The C++ Programming Language (Special Edition)》开始看这本书的,与当时手里的钱能老师所著的《C++程序设计教程》相比,我感觉Stroustrup的The C++ Programming Language简直是在讲述一门新语言。

Stroustrup的另外一本书《The Design and Evolution of C++》是C++进阶的必读之作,国内版译为《C++语言的设计与演化》,这本书可以理解为Stroustrup设计C++背后的心路历程以及设计决策与语言机制:

Stroustrup的书虽好,但读起来有些难度,对初学者可能不那么友好,尤其是The C++ Programming Language,更像是一本C++语言的spec,缺少了像Kernighan那种春风化雨的阅读体验,所以我个人更喜欢下面这位C++大佬的作品。

注:Stroustrup这些年持续更新其作品,甚至还推出了《A Tour of C++》这样的更易读的小册子。

2.2.2 Stanley B. Lippman

Stanley B. Lippman是Stroustrup的同事,早年和Stroustrup一起在Bell实验室开发C++编译器,2001年,Lippman加入微软,成为Visual C++的架构师。他最为人所称道的是他的“一厚一薄”两本C++经典著作。

我们先说这本厚的,它就是C++大部头:《C++ Primer》,这本书分为C++基础、C++标准库、类设计者的工具和高级主题四个部分,非常适合C++初学者,同样其高级主题对于有经验的C++熟手也有很高的价值。

Lippman的另外一本薄书名为《Inside the C++ Object Model》,最初国内中译版《深度探索C++对象模型》由宝岛知名技术作家侯捷翻译,如今的很多新一代程序员可能已经不知道侯捷老师了,他如今依然活跃在C++高级培训的舞台上。

这本书属于C++进阶书籍,Lippman从C++编译器实现者的角度对C++的对象模型、继承和多态的实现机制(比如虚函数表、动态绑定等)等做了深入浅出的讲解,是C++走向高级阶段的必读之作。

不幸的是,Lippman已于2022年仙逝,我们再也看不到他亲自更新C++ Primer了。

2.2.3 Scott Meyers

如果你学过C++,但没有看过Effective C++系列,那我可以肯定你不是C++高手,Scott Meyers的《Effective C++》系列书籍是C++程序员通往高手境界的必读书籍:

这套C++丛书的特色就是以一条条C++准则为单元,每一条都扼要说明了一个可让你写出更好的C++程序代码的方法,并以特别设计过的例子详加讨论,这非常适合程序员的胃口。

2.3 Java

我在工作初期曾经系统学过Java,那时Java刚刚发布5.0,Spring也是方兴未艾。现在看来,没有Spring的Java是那么的纯粹!

学习纯Java,两本书足矣!下面我们就分别来看看这两本书和他们的作者。

2.3.1 Bruce Eckel

Bruce Eckel是著名的C++和Java作家,以其深入浅出的写作风格闻名。我没有将Eckel列到C++范畴,一是因为C++大神太多,二则是因为他的Thinking in Java似乎比他的Thinking in C++影响力更大。

这本书《Java编程思想》被誉为学习Java最全面的资源之一。Eckel以其特有的方式,深入浅出地解释了Java的核心概念和高级特性。书中的例子丰富而实用,帮助读者真正理解和掌握Java编程,并这本书只讲纯Java语法,并不涉及任何框架。读过的朋友,还记得书中那句“Everything is an object”吗!

2.3.2 Joshua Bloch

和Bruce Eckel是一个作家和培训师不同,Joshua Bloch领导了许多Java平台功能的设计和实现,包括Java Collections Framework、java.math包和断言机制等,对Java语言和库的发展做出了重要贡献。他曾在Sun Microsystems担任杰出工程师。2004年他离开Sun,成为Google首席Java架构师。

和Bloch为Java实现做出的贡献相比,他的书籍在Java界更是“家喻户晓”,他曾自己或与其他人合著过多本Java书籍,包括Java Puzzlers、Java Concurrency In Practice以及Effective Java。而最后的《Effective Java》更是成为了Java程序员几乎人手一本的神作:

这本书提供了编写高质量Java代码的最佳实践。Bloch基于自己丰富的经验,提出了许多实用的建议,涵盖了从基本的编程习惯到高级主题如并发和序列化,其中每条建议都值得大家细致琢磨品味。这本书帮助无数Java程序员提升了代码质量和效率。

3. 算法与数据结构

程序员,永远绕不开算法与数据结构。在算法与数据结构领域,Donald E. Knuth无疑是祖师爷级别的,他写的多卷本大部头的“计算机程序设计艺术”被多少人买回后顶礼膜拜,却不曾拆封拜读:)。

更多人和我一样,喜欢更为实用的,能看懂的书籍资料。

3.1 Robert Sedgewick

首先我们来看Sedgewick和Wayne合著的作品:《算法(第4版)》。

Robert Sedgewick是Donald E. Knuth的学生,名门之后,从1985年开始一直担任普林斯顿大学计算机科学系教授,曾任该系主任。很多耳熟能详的数据结构和算法都是Sedgewick发明的,比如红黑树、三元搜索树等。他基于课程讲义编写的这本“算法”,以清晰的讲解和丰富的Java实现而闻名。该书不仅介绍了经典数据结构和算法,还着重讨论了算法在实际问题中的应用。书中包含了大量的图示和代码,使得复杂的算法概念变得易于理解。这本书适合从入门到进阶的各个阶段的读者,是算法学习的必备参考。不过你不要想一下吃透这本书,很多算法非常深奥,可以将其作为案头的参考书,常看常新。

Sedgewick曾出版过多本算法书籍,有C实现的,有C++实现的,大家可以根据自己需要选择不同的实现版本。

3.2 Thomas H. CormenCharles E. Leiserson

提到算法,就不能不提到另外一部大部头的经典著作《算法导论

这部作品的英文版有上千页,可谓是算法领域的“百科全书”,这本书由 达特茅斯学院计算机科学系教授Thomas H. Cormen、麻省理工学院计算机科学与电气工程系教授Charles E. Leiserson等四人共同完成。这本书既全面又严谨,因此啃起来非常有难度,我在大学时期就买了该书的高教出版社的影印版,至今过去了十余年,我也没有完成全书的阅读:(。

在国内数据结构领域不得不说的另外一本教材是清华大学出版社出版的、由严蔚敏和吴伟民两位老师合著的《数据结构(C语言版)》,因很多高效将其作为考研指定教材,因此这本书的市占率很高,大家可以结合前面两个外版教材一起学习,效果可能更佳。下图是当年我购买时的版本样式:

4. 软件工程与编程思想

从大学毕业,入职工作后,软件工程知识必不可少,下面这些经典著作可以帮助大家快速融入工程领域。

4.1 Erich Gamma、Richard Helm、Ralph Johnson和John Vlissides

这四位博士都是国际公认的面向对象软件领域的专家。他们在1994年合著的开创性的书籍《设计模式:可复用面向对象软件的基础》成为了开发人员在工程领域的必读之作,其影响力之广泛在整个IT领域都能排在TOP10。

这本书定义并系统化了软件设计中的常见模式,为面向对象设计提供了一套通用词汇和最佳实践。书中详细描述了23种设计模式,并通过实例说明了它们的应用场景。这本书不仅影响了无数程序员的设计思想,也为软件工程领域提供了宝贵的参考。这四位博士的工作对软件设计模式的研究和应用产生了深远的影响。

4.2 Steve McConnell

Steve McConnell是软件工程实践领域的权威专家,他的著作有不少,包括《Code Complete》、《Rapid Development 》和《Software Estimation》等,都对提高代码质量和开发效率有着重要影响。而其中影响力最大的莫过于《代码大全(第2版)》:

这是一本软件构建实践的百科全书,它涵盖了从变量命名到软件架构的各个方面。McConnell以丰富的经验和洞察力,提供了大量实用的编程技巧和最佳实践。这本书不仅适合新手学习,也是有经验的程序员提升技能的重要资源。并且,书中所讲的各种技巧和实践几乎与编程语言无关,无论你擅长哪种语言,都能从中获益!

4.3 Robert C. Martin(Uncle Bob)

Robert C. Martin,昵称”Uncle Bob”,是敏捷开发运动的重要推动者,也是软件工艺的倡导者。他的著作颇多,包括敏捷软件开发、敏捷整洁之道、代码整洁之道、匠艺整洁之道等。最近刚刚上市的《函数式设计》也出自Bob大叔之手。

在他的诸多作品中,《敏捷软件开发:原则、模式与实践》对我的影响更为深刻。

在这本书中,Martin详细阐述了敏捷开发的核心原则(SOLID原则),并通过大量的案例研究和设计模式,展示了如何在实践中应用这些原则。这本书不仅介绍了技术层面的最佳实践,还深入探讨了敏捷开发对团队协作和项目管理的影响。

4.4 Andrew HuntDavid Thomas

Hunt和Thomas是两位经验丰富的软件开发者,他们的著作强调了持续学习和改进在程序员职业生涯中的重要性。他们共同开创了Pragmatic Programmer的概念,并通过其大作:《程序员修炼之道:从小工到专家》为开发人员讲述具体实践的方法:

这本书强调了在软件开发中保持务实态度的重要性。作者们通过一系列小贴士和练习,涵盖了从个人责任到知识投资等多个方面,帮助程序员不断提升自己的技能和职业素养。

4.5 Frederick P. Brooks Jr.

谈到软件工程,我们不能忘记一个人,他就是Frederick P. Brooks Jr.。Brooks是一位美国计算机架构师、软件工程师和计算机科学家,以管理IBMSystem/360系列大型机和OS/360的开发而闻名。他在其开创性著作《人月神话》中坦率地写下了这些开发和项目管理经历,对后续的软件工程领域产生了深远的影响:

这本软件工程的经典之作挑战了许多关于软件开发的传统观念。Brooks通过自己在IBM的经历,深入探讨了大型软件项目管理中的各种问题。尽管首次出版已经过去多年,但书中关于团队沟通、项目规划和概念完整性等方面的见解至今仍然适用,是每个软件项目管理者入门必读的著作。

5. 计算机系统

最后,我们看一下计算机系统领域,我将系统编程、网络编程、编译器、数据库、操作系统统统放到这个领域一起说明了,排名不分先后:)。

5.1 Randal E.Bryant

Randal Bryant是一位美国计算机科学家和学者,因其在形式验证数字硬件和软件方面的研究而闻名。Bryant自1984年以来一直在卡内基梅隆大学任教。2004年至2014年,他担任卡内基梅隆大学计算机科学学院(SCS)院长。他长期从事本科生和研究生计算机系统方面课程教学近40年。他和David O’Hallaron教授一起在卡内基梅隆大学开设了15-213课程“计算机系统导论”,其《深入理解计算机系统》便是以这门课的讲义为基础撰写而成的:

这本书涵盖了计算机系统的多个层面,包括硬件、操作系统、编程语言和网络等,使读者对计算机的整体架构有深入的理解。对于计算机专业入门的学生而言,这本书是必读的教材,国内尚没有类似的教材能望其项背!当年如果早早能看到这本教材该多好啊!

5.2 W. Richard Stevens

Richard Stevens是UNIX和网络编程领域的权威专家,也是我顶礼膜拜的大神,他的著作对系统级编程产生了深远的影响。在我工作后的若干年内,Stevens的作品是我理解Unix/Linux系统编程的必备参考,并全部购买收藏,随时翻阅。更神奇的是,他的每一部作品都是上乘之作,看下面的豆瓣评分:

-《UNIX环境高级编程》

这本书被誉为UNIX编程的”圣经”。Stevens深入浅出地解释了UNIX系统调用和库函数的使用,涵盖了文件I/O、进程控制、信号处理、线程等关键主题。这本书不仅是学习UNIX/Linux系统编程的必备参考,也为理解操作系统内部工作原理提供了宝贵的见解。

-《UNIX网络编程》(卷1:套接字联网API,卷2:进程间通信)

相对于Unix环境高级编程的全面和总括,这套书深入具体领域,重点覆盖了UNIX环境下的网络编程和进程间通信技术。第一卷重点讲解了TCP/IP协议族和套接字编程,第二卷则专注于UNIX系统上的各种IPC(进程间通信)机制。这套书不仅提供了详细的技术讲解,还包含了大量的实例代码,是网络编程学习和实践的必备参考。

-《TCP/IP详解》系列

这套书深入浅出地解释了TCP/IP协议族的工作原理,从协议的基本概念到复杂的实现细节,为读者呈现了一幅完整的TCP/IP知识图谱。这套书不仅适合网络程序员阅读,也是理解现代互联网技术基础的重要资源。

对于Stevens的这些书,虽然年代已久,但对如今的后端/系统程序员依然有极大的参考价值,建议大家必读。

5.3 Alfred V. Aho, Monica S. Lam, Ravi Sethi和Jeffrey D. Ullman

以Alfred V. Aho为代表的这几位作者都是编译器理论和实现的权威专家,他们的著作被誉为编译原理领域的”圣经”。Alfred V. Aho同时也是AWK语言中的那个”A”,他还著有《计算机算法的设计与分析》。当然“龙书”是其在学术领域著作的最卓越代表,学编译原理的同学建议人手一本。

这本书以其全面性和深度在编译器领域独树一帜。从词法分析、语法分析到代码优化,书中详细讲解了编译器设计的各个环节。虽然以理论为主,但书中也包含了大量的实例和练习,帮助读者将理论付诸实践。这本书不仅是编译器开发者的必读之作,对理解程序语言的设计和实现也有重要帮助。国内各大开设编译原理课程的重点高校也都将其作为第一教材。国内一些高校也编写了一些自己的教材,但与这本“龙书”相比,level还是差距很大。

5.4 Abraham Silberschatz

Avi Silberschatz是一位以色列计算机科学家和研究员,曾在bell实验室工作过,他因在计算机科学领域撰写了许多有影响力的著作而闻名,尤其是操作系统和数据库系统方面。其作品《数据库系统概念》《操作系统概念》被全世界的高校计算机专业所采用。

-《数据库系统概念》

本书由Abraham Silberschatz、 Henry F. Korth和S. Sudarshan合著,这三位作者都是数据库系统领域的专家,他们的著作被广泛用作大学教材和专业参考。这本书全面介绍了数据库系统的基本概念、设计原理和实现技术。从关系代数到事务处理,从查询优化到分布式数据库,书中涵盖了传统和现代数据库技术的各个方面。无论你是在校数据库专业的学生,还是从事数据库核心系统开发的工程师,亦或是数据库应用开发的程序员,本书都极具参考价值,可放置在案头随时查看。

-《操作系统概念》

本书由Abraham Silberschatz, Peter B. Galvin 和Greg Gagne合著,这几位作者都是操作系统理论和实践的专家,他们的著作在学术界和工业界都有广泛影响。

这本书以其全面性和深度成为了操作系统学习的重要参考。从进程管理到分布式系统,从内存管理到安全性,书中详细讨论了操作系统的各个方面。作者们不仅介绍了理论知识,还通过案例研究展示了这些概念在实际系统中的应用。这本书适合从入门到进阶的各个阶段的读者,是理解现代计算机操作系统工作原理的关键参考材料。

6. 小结

在教师节这个神圣的日子中,我们回顾了这些在计算机科学和编程领域做出杰出贡献的”老师们”。他们的智慧和洞见,通过这些经典著作,影响了几代程序员的成长,更是对我的程序员生涯提供了莫大的帮助。

这些大师们不仅仅传授了技术知识,更重要的是,他们塑造了我们思考问题和解决问题的方式。从C语言到Go,从算法到软件工程,从操作系统、编译原理到网络编程等,这些著作涵盖了计算机科学的方方面面,构建了现代软件开发的知识体系。

作为程序员,我们应该心怀感激,因为我们站在了这些巨人的肩膀上。同时,我们也要记住,学习是一个终身的过程。技术在不断进步,新的挑战不断出现,但这些经典著作中蕴含的智慧将永远指引我们前进的方向。


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

十分钟入门Go语言

本文永久链接 – https://tonybai.com/2023/02/23/learn-go-in-10-min

本文旨在带大家快速入门Go语言,期望小伙伴们在花费十分钟左右通读全文后能对Go语言有一个初步的认知,为后续进一步深入学习Go奠定基础。

本文假设你完全没有接触过Go,你可能是一名精通其他编程语言的程序员,也可能是毫无编程经验、刚刚想转行为码农的热血青年。

编程简介

编程就是生产可在计算机上执行的程序的过程(如下图)。在这个过程中,程序员是“劳动力”,编程语言是工具,可执行的程序是生产结果。而Go语言就是程序员在编程生产过程中使用的一种优秀生产工具。

作为“劳动力”的程序员在这个过程中要做的就是使用某种编程语言作为生产工具,将事先设计好的执行逻辑组织和表达出来,这与一个作家将其大脑中设计好的故事情节用人类语言组织和书写在纸上的过程颇为类似(如下图)。

通过这个类比来看,学习一门编程语言,就好比学习一门人类语言,其词汇和语法将是我们的主要学习内容,本文就将围绕Go语言的主要“词汇”和语法形式进行快速说明。

Go简介

Go语言是由Google公司的三位大神级程序员Robert Griesemer、Rob Pike和Ken Thompson在2007年共同开发的一种新的后端编程语言,2009年,Go语言宣布开源。

Go语言的特点是简单易学、静态类型、编译速度快,运行效率高,代码简洁,并且原生支持并发编程。它还支持自动内存管理,可以让开发者更加专注于编程本身,而不用担心内存泄漏的问题。此外,Go语言还支持多核处理器,可以更好地利用多核处理器的优势,提高程序的运行效率。

经过十多年的发展,Go语言现在已经成为一种流行的编程语言,它可以用于开发各种应用程序,包括Web应用、网络服务、系统管理工具、移动应用、游戏开发、数据库管理等。Go语言常用于构建大型分布式系统,以及构建高性能的服务器端应用程序。Go为当前的云原生计算时代开发了一批“杀手级”应用,包括Docker、Kubernetes、Prometheus、InfluxDB、Cilium等。

安装Go

Go是静态语言,需要先编译,再执行,因此在开发Go程序之前,我们首先需要安装Go编译器以及相关工具链。安装的步骤很简单:

  • Go官网下载最新版本的Go语言安装包 – https://go.dev/dl/
  • 解压安装包,并将其复制到您想要安装的位置,例如:/usr/local/go;如果是Windows、MacOS平台,也可以下载图形化安装的安装包;
  • 设置环境变量,将Go语言的安装路径添加到PATH变量中;
  • 打开终端,输入go version,检查Go语言是否安装成功。如输出类似下面的内容,则表明安装成功!
$go version
go version go1.20 darwin/amd64

注:位于中国大陆的开发者们还需要一个额外的设置:export GOPROXY=’https://goproxy.cn’或将这个设置置于shell配置文件(比如.bashrc)中并使之生效。

第一个Go程序:Hello World

建立一个新目录,并在其中创建新文件helloworld.go,用任意编辑器打开helloworld.go,输入下面Go源码:

//helloworld.go

package main

import "fmt"

func main() {
    fmt.Println("Hello, World!")
}

Go支持直接运行某个源文件:

$go run helloworld.go
Hello, World!

但通常我们会先编译这个源文件(helloworld.go),生成可执行的二进制程序(./helloworld),然后再运行它:

$go build -o helloworld helloworld.go
$./helloworld
Hello, World!

Go包(package)

Go包是Go语言中的一种封装技术,它可以将一组Go语言源文件组织成一个可重用的单元,以便在其他Go程序中使用。同属于一个Go包的所有源文件放在一个目录下,并且按惯例该目录的名字与包名相同。以Go标准库的io包为例,其包内的源文件列表如下:

// $GOROOT/src/io目录下的文件列表:
io.go
multi.go
pipe.go

Go包也是Go编译的基本单元,Go编译器可以将包编译为可执行文件(如何该包为main包,且包含main函数实现),也可以编译为可重用的库文件(.a)。

包声明

Go包的声明通常是在每个Go源文件的开头,使用关键字package进行声明,例如:

// mypackage.go
package mypackage

... ...

package的名字按惯例通常为全小写的单个单词或缩略词,比如io、net、os、fmt、strconv、bytes等。

导入Go包

如果要复用已有的Go包,我们需要在源码中导入该包。要导入Go包,可以使用import关键字,例如:

import "fmt"                    // 导入标准库的fmt包

import "github.com/spf13/pflag" // 导入spf13开源的pflag包

import _ "net/http/pprof"       // 导入标准库net/http/pprof包,
                                // 但不显式使用该包中的类型、变量、函数等标识符

import myfmt "fmt"              // 将导入的包重命名为myfmt

Go模块

Go模块(module)是Go语言在1.11版本中引入的新特性,Go module是一组相关的Go package的集合,这个包集合被当做一个独立的单元进行统一版本管理。Go module这种新的依赖管理机制可以让开发者更轻松地管理Go语言项目的依赖关系,并且可以更好地支持多版本的依赖管理。在具有实用价值的Go项目中,我们都会使用Go module进行依赖管理。Go module有版本之分,Go module的版本依赖关系是建立在对语义版本(semver)严格遵守的前提下的。

Go使用go.mod文件来精确记录依赖关系要求,下面是go.mod中依赖关系的操作方法:

$go mod init demo // 创建一个module root为demo的go.mod
$go mod init github.com/bigwhite/mymodule // 创建一个module root为github.com/bigwhite/mymodule的go.mod

$go get github.com/bigwhite/foo@latest  // 向go.mod中添加一个依赖包github.com/bigwhite/foo的最新版本
$go get github.com/bigwhite/foo         // 与上面命令等价
$go get github.com/bigwhite/foo@v1.2.3  // 显式指定要获取v1.2.3版本

$go mod tidy   // 自动添加缺失的依赖包和清理不用的依赖包
$go mod verify // 确认所有依赖都有效

Go最小项目结构

Go官方并没有规定Go项目的标准结构布局,下面是Go核心团队技术负责人Russ Cox推荐的Go最小项目结构:

// 在Go项目仓库根路径下

- go.mod
- LICENSE
- README
- xx.go
- yy.go
... ...

// 在Go项目仓库根路径下

- go.mod
- LICENSE
- README
- package1/
    - package1.go
- package2/
    - package2.go
... ...

变量

Go语言有两种变量声明方式:

  • 使用var关键字

使用var关键字进行声明的方式适合所有场合。

var a int     // 声明一个int型变量a,初值为0
var b int = 5 // 声明一个int型变量b,初值为5
var c = 6     // Go会根据右值自动为变量c的赋予默认类型,默认的整型为int

var (         // 我们可以将变量声明统一放置在一个var块中,这与上面的声明方式等价
    a int
    b int = 5
    c = 6
)

注:Go变量声明采用变量在前,类型在后的方式,这与C、C++、Java等静态编程语言有较大不同。

  • 使用短声明方式声明变量
a := 5       // 声明一个变量a,Go会根据右值自动为变量a的赋予默认类型,默认的整型为int
s := "hello" // 声明一个变量s,Go会根据右值自动为变量s的赋予默认类型,默认的字符串类型为string

注:这种声明方式仅限于在函数或方法内使用,不能用于声明包级变量或全局变量。

常量

Go语言的常量使用const关键字进行声明:

const a int       // 声明一个int型常量a,其值为0
const b int = 5   // 声明一个int型常量b,其值为5
const c = 6       // 声明一个常量c,Go会根据右值自动为常量c的赋予默认类型,默认的整型为int
const s = "hello" // 声明一个常量s,Go会根据右值自动为常量s的赋予默认类型,默认的字符串类型为string

const (           // 我们可以将常量声明统一放置在一个const块中,这与上面的声明方式等价
    a int
    b int = 5
    c = 6
    s = "hello"
)

类型

Go原生内置了多种基本类型与复合类型。

基本类型

Go原生支持的基本类型包括布尔型、数值类型(整型、浮点型、复数类型)、字符串类型,下面是一些示例:

bool  // 布尔类型,默认值false

uint     // 架构相关的无符号整型,64位平台上其长度为8字节
int      // 架构相关的有符号整型,64位平台上其长度为8字节
uintptr  // 架构相关的用于表示指针值的类型,它是一个无符号的整数,大到足以存储一个任意类型的指针的值

uint8    // 架构无关的8位无符号整型
uint16   // 架构无关的16位无符号整型
uint32   // 架构无关的32位无符号整型
uint64   // 架构无关的64位无符号整型

int8     // 架构无关的8位有符号整型
int16    // 架构无关的16位有符号整型
int32    // 架构无关的32位有符号整型
int64    // 架构无关的64位有符号整型

byte     // uint8类型的别名
rune     // int32类型的别名,用于表示一个unicode字符(码点)

float32     // 单精度浮点类型,满足IEEE-754规范
float64     // 双精度浮点类型,满足IEEE-754规范

complex64   // 复数类型,其实部和虚部均为float32浮点类型
complex128  // 复数类型,其实部和虚部均为float64浮点类型

string      // 字符串类型,默认值为""

我们可以使用预定义函数complex来构造复数类型,比如:complex(1.0, -1.4)构造的复数为1 – 1.4i。

复合类型

Go原生支持的复合类型包括数组(array)、切片(slice)、结构体(struct)、指针(pointer)、函数(function)、接口(interface)、map、channel。

数组类型

数组类型是一组同构类型元素组成的连续体,它具有固定的长度(length),不能动态伸缩:

[8]int      // 一个元素类型为int、长度为16的数组类型
[32]byte    // 一个元素类型为byte、长度为32的数组类型
[2]string   // 一个元素类型为string、长度为2的数组类型
[N]T        // 一个元素类型为T、长度为N的数组类型

通过预定义函数len可以得到数组的长度:

var a = [8]int{11, 12, 13, 14, 15, 16, 17, 18}
println(len(a)) // 8

通过数组下标(从0开始)可以直接访问到数组中的任意元素:

println(a[0]) // 11
println(a[2]) // 13
println(a[7]) // 18

Go支持声明多维数组,即数组的元素类型依然为数组类型:

[2][3][5]float64  // 一个多维数组类型,等价于[2]([3]([5]float64))

切片类型

切片类型与数组类型类似,也是同构类型元素的连续体。不同的是切片类型的长度可变,我们在声明切片类型时无需传入长度属性:

[]int       // 一个元素类型为int的切片类型
[]string    // 一个元素类型为string的切片类型
[]T         // 一个元素类型为T的切片类型
[][][]float64 // 多维切片类型,等价于[]([]([]float64))

通过预定义函数len可以得到切片的当前长度:

var sl = []int{11, 12} // 一个元素类型为int的切片,其长度(len)为2, 其值为[11 12]
println(len(sl)) // 2

切片还有一个属性,那就是容量,通过预定义函数cap可以获得其容量值:

println(cap(sl)) // 2

和数组不同,切片可以动态伸缩,Go会根据元素的数量动态对切片容量进行扩展。我们可以通过append函数向切片追加元素:

sl = append(sl, 13)     // 向sl中追加新元素,操作后sl为[11 12 13]
sl = append(sl, 14)     // 向sl中追加新元素,操作后sl为[11 12 13 14]
sl = append(sl, 15)     // 向sl中追加新元素,操作后sl为[11 12 13 14 15]
println(len(sl), cap(sl)) // 5 8 追加后切片容量自动扩展为8

和数组一样,切片也是使用下标直接访问其中的元素:

println(sl[0]) // 11
println(sl[2]) // 13
println(sl[4]) // 15

结构体类型

Go的结构体类型是一种异构类型字段的聚合体,它提供了一种通用的、对实体对象进行聚合抽象的能力。下面是一个包含三个字段的结构体类型:

struct {
    name string
    age  int
    gender string
}

我们通常会给这样的一个结构体类型起一个名字,比如下面的Person:

type Person struct {
    name string
    age  int
    gender string
}

下面声明了一个Person类型的变量:

var p = Person {
    name: "tony bai",
    age: 20,
    gender: "male",
}

我们可以通过p.FieldName来访问结构体中的字段:

println(p.name) // tony bai
p.age = 21

结构体类型T的定义中可以包含类型为*T的字段成员,但不能递归包含T类型的字段成员:

type T struct {
    ... ...
    p *T    // ok
    t T     // 错误:递归定义
}

Go结构体亦可以在定义中嵌入其他类型:

type F struct {
    ... ...
}

type MyInt int

type T struct {
    MyInt
    F
    ... ...
}

嵌入类型的名字将作为字段名:

var t = T {
    MyInt: 5,
    F: F {
        ... ...
    },
}

println(t.MyInt) // 5

Go支持不包含任何字段的空结构体:

struct{}
type Empty struct{}        // 一个空结构体类型

空结构体类型的大小为0,这在很多场景下很有用(省去了内存分配的开销):

var t = Empty{}
println(unsafe.Sizeof(t)) // 0

指针类型

int类型对应的指针类型为*int,推而广之T类型对应的指针类型为*T。和非指针类型不同,指针类型变量存储的是内存单元的地址,*T指针类型变量的大小与T类型大小无关,而是和系统地址的表示长度有关。

*int     // 一个int指针类型
*[4]byte // 一个[4]byte数组指针类型

var a = 6
var p *T // 声明一个T类型指针变量p,默认值为nil
p = &a   // 用变量a的内存地址给指针变量p赋值
*p = 7   // 指针解引用,通过指针p将变量a的值由6改为7

n := new(int)  // 预定义函数返回一个*int类型指针
arr := new([4]int)  // 使用预定义函数new分配一个[4]int数组并返回一个*[4]int类型指针

map类型

map是Go语言提供的一种抽象数据类型,它表示一组无序的键值对,下面定义了一组map类型:

map[string]int                // 一个key类型为string,value类型为int的map类型
map[*T]struct{ x, y float64 } // 一个key类型为*T,value类型为struct{ x, y float64 }的map类型
map[string]interface{}        // 一个key类型为string,value类型为interface{}的map类型

我们可以用map字面量或make来创建一个map类型实例:

var m = map[string]int{}      // 声明一个map[string]int类型变量并初始化
var m1 = make(map[string]int) // 与上面的声明等价
var m2 = make(map[string]int, 100) // 声明一个map[string]int类型变量并初始化,其初始容量建议为100

操作map变量的方法也很简单:

m["key1"] = 5  // 添加/设置一个键值对
v, ok := m["key1"]  // 获取“key1”这个键的值,如果存在,则其值存储在v中,ok为true
delete(m, "key1") // 从m这个map中删除“key1”这个键以及其对应的值

其他类型

函数、接口、channel类型在后面有详细说明。

自定义类型

使用type关键字可以实现自定义类型:

type T1 int         // 定义一个新类型T1,其底层类型(underlying type)为int
type T2 string      // 定义一个新类型T2,其底层类型为string
type T3 struct{     // 定义一个新类型T3,其底层类型为一个结构体类型
    x, y int
    z string
}
type T4 []float64   // 定义一个新类型T4,其底层类型为[]float64切片类型
type T5 T4          // 定义一个新类型T5,其底层类型为[]float64切片类型

Go也支持为类型定义别名(alias),其形式如下;

type T1 = int       // 定义int的类型别名为T1,T1与int等价
type T2 = string    // 定义string的类型别名为T2,T2与string等价
type T3 = T2        // 定义T的类型别名为T3,T3与T2等价,也与string等价

类型转换

Go不支持隐式自动转型,如果要进行类型转换操作,我们必须显式进行,即便两个类型的底层类型相同也需如此:

type T1 int
type T2 int
var t1 T1
var n int = 5
t1 = T1(n)      // 显式将int类型变量转换为T1类型
var t2 T2
t2 = T2(t1)     // 显式将T1类型变量转换为T2类型

Go很多原生类型支持相互转换:

// 数值类型的相互转换

var a int16 = 16
b := int32(a)
c := uint16(a)
f := float64(a)

// 切片与数组的转换(Go 1.17版本及后续版本支持)

var a [3]int = [3]int([]int{1,2,3}) // 切片转换为数组
var pa *[3]int = (*[3]int)([]int{1,2,3}) // 切片转换为数组指针
sl := a[:] // 数组转换为切片

// 字符串与切片的相互转换

var sl = []byte{'h', 'e','l', 'l', 'o'}
var s = string(sl) // s为hello
var sl1 = []byte(s) // sl1为['h' 'e' 'l' 'l' 'o']
string([]rune{0x767d, 0x9d6c, 0x7fd4})  // []rune切片到string的转换

控制语句

Go提供了常见的控制语句,包括条件分支(if)、循环语句(for)和选择分支语句(switch)。

条件分支语句

// if ...

if a == 1 {
    ... ...
}

// if - else if - else

if a == 1 {

} else if b == 2 {

} else {

}

// 带有条件语句自用变量
if a := 1; a != 0 {

}

// if语句嵌套

if a == 1 {
    if b == 2 {

    } else if c == 3 {

    } else {

    }
}

循环语句

// 经典循环

for i := 0; i < 10; i++ {
    ...
}

// 模拟while ... do

for i < 10 {

}

// 无限循环

for {

}

// for range

var s = "hello"
for i, c := range s {

}

var sl = []int{... ...}
for i, v := range sl {

}

var m = map[string]int{}
for k, v := range m {

}

var c = make(chan int, 100)
for v := range c {

}

选择分支语句

var n = 5
switch n {
    case 0, 1, 2, 3:
        s1()
    case 4, 5, 6, 7:
        s2()
    default: // 默认分支
        s3()
}

switch n {
    case 0, 1:
        fallthrough  // 显式告知执行下面分支的动作
    case 2, 3:
        s1()
    case 4, 5, 6, 7:
        s2()
    default:
        s3()
}

switch x := f(); {
    case x < 0:
        return -x
    default:
        return x
}

switch {
    case x < y:
        f1()
    case x < z:
        f2()
    case x == 4:
        f3()
}

函数

Go使用func关键字来声明一个函数:

func greet(name string) string {
    return fmt.Sprintf("Hello %s", name)
}

函数由函数名、可选的参数列表和返回值列表组成。Go函数支持返回多个返回值,并且我们通常将表示错误值的返回类型放在返回值列表的最后面:

func Atoi(s string) (int, error) {
    ... ...
    return n, nil
}

在Go中函数是一等公民,因此函数自身也可以作为参数或返回值:

func MultiplyN(n int) func(x int) int {
  return func(x int) int {
    return x * n
  }
}

像上面MultiplyN函数中定义的匿名函数func(x int) int,它的实现中引用了它的外围函数MultiplyN的参数n,这样的匿名函数也被称为闭包(closure)

说到函数,我们就不能不提defer。在某函数F调用的前面加上defer,该函数F的执行将被“延后”至其调用者A结束之后:

func F() {
    fmt.Println("call F")
}

func A() {
    fmt.Println("call A")
    defer F()
    fmt.Println("exit A")
}

func main() {
    A()
}

上面示例输出:

call A
exit A
call F

在一个函数中可以多次使用defer:

func B() {
    defer F()
    defer G()
    defer H()
}

被defer修饰的函数将按照“先入后出”的顺序在B函数结束后被调用,上面B函数执行后将输出:

call H
call G
call F

方法

方法是带有receiver的函数。下面是Point类型的一个方法Length:

type Point struct {
    x, y float64
}

func (p Point) Length() float64 {
    return math.Sqrt(p.x * p.x + p.y * p.y)
}

而在func关键字与函数名之间的部分便是receiver。这个receiver也是Length方法与Point类型之间纽带。我们可以通过Point类型变量来调用Length方法:

var p = Point{3,4}
fmt.Println(p.Length())

亦可以将方法当作函数来用:

var p = Point{3,4}
fmt.Println(Point.Length(p)) // 这种用法也被称为方法表达式(method expression)

接口

接口是一组方法的集合,它代表一个“契约”,下面是一个由三个方法组成的方法集合的接口类型:

type MyInterface interface {
    M1(int) int
    M2(string) error
    M3()
}

Go推崇面向接口编程,因为通过接口我们可以很容易构建低耦合的应用。

Go还支持在接口类型(如I)中嵌套其他接口类型(如io.Writer、sync.Locker),其结果就是新接口类型I的方法集合为其方法集合与嵌入的接口类型Writer和Locker的方法集合的并集:

type I interface { // 一个嵌入了其他接口类型的接口类型
   io.Writer
   sync.Locker
}

接口实现

如果一个类型T实现了某个接口类型MyInterface方法集合中的所有方法,那么我们说该类型T实现了接口MyInterface,于是T类型的变量t可以赋值给接口类型MyInterface的变量i,此时变量i的动态类型为T:

var t T
var i MyInterface = t // ok

通过上述变量i可以调用T的方法:

i.M1(5)
i.M2("demo")
i.M3()

方法集合为空的接口类型interface{}被称为“空接口类型”,空白的“契约”意味着任何类型都实现了该空接口类型,即任何变量都可以赋值给interface{}类型的变量:

var i interface{} = 5 // ok
i = "demo"            // ok
i = T{}               // ok
i = &T{}              // ok
i = []T{}             // ok

注:Go 1.18中引入的新预定义标识符any与interface{}是等价类型。

接口的类型断言

Go支持通过类型断言从接口变量中提取其动态类型的值:

v, ok := i.(T) // 类型断言

如果接口变量i的动态类型确为T,那么v将被赋予该动态类型的值,ok为true;否则,v为T类型的零值,ok为false。

类型断言也支持下面这种语法形式:

v := i.(T)

但在这种形式下,一旦接口变量i之前被赋予的值不是T类型的值,那么这个语句将抛出panic。

接口类型的type switch

“type switch”这是一种特殊的switch语句用法,仅用于接口类型变量:

func main() {
    var x interface{} = 13
    switch x.(type) {
    case nil:
        println("x is nil")
    case int:
        println("the type of x is int") // 执行这一分支case
    case string:
        println("the type of x is string")
    case bool:
        println("the type of x is string")
    default:
        println("don't support the type")
    }
}

switch关键字后面跟着的表达式为x.(type),这种表达式形式是switch语句专有的,而且也只能在switch语句中使用。这个表达式中的x必须是一个接口类型变量,表达式的求值结果是这个接口类型变量对应的动态类型。

上述例子中switch后面的表达式也可由x.(type)换成了v := x.(type)。v中将存储变量x的动态类型对应的值信息:

var x interface{} = 13
switch x.(type) {
    case nil:
        println("v is nil")
    case int:
        println("the type of v is int, v =", v) // 执行这一分支case,v = 13
    ... ...
}

泛型

Go从1.18版本开始支持泛型。Go泛型的基本语法是类型参数(type parameter),Go泛型方案的实质是对类型参数的支持,包括:

  • 泛型函数(generic function):带有类型参数的函数;
  • 泛型类型(generic type):带有类型参数的自定义类型;
  • 泛型方法(generic method):泛型类型的方法。

泛型函数

下面是一个泛型函数max的定义:

type ordered interface {
    ~int | ~int8 | ~int16 | ~int32 | ~int64 |
        ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
        ~float32 | ~float64 |
        ~string
}

func max[T ordered](sl []T) T {
    ... ...
}

与普通Go函数相比,max函数在函数名称与函数参数列表之间多了一段由方括号括起的代码:[T ordered];max参数列表中的参数类型以及返回值列表中的返回值类型都是T,而不是某个具体的类型。

max函数中多出的[T ordered]就是Go泛型的类型参数列表(type parameters list),示例中这个列表中仅有一个类型参数T,ordered为类型参数的类型约束(type constraint)。

我们可以像普通函数一样调用泛型函数,我们可以显式指定类型实参:

var m int = max[int]([]int{1, 2, -4, -6, 7, 0})  // 显式指定类型实参为int
fmt.Println(m) // 输出:7

Go也支持自动推断出类型实参:

var m int = max([]int{1, 2, -4, -6, 7, 0}) // 自动推断T为int
fmt.Println(m) // 输出:7

泛型类型

所谓泛型类型,就是在类型声明中带有类型参数的Go类型:

type Set[T comparable] map[T]string

type element[T any] struct {
    next *element[T]
    val  T
}

type Map[K, V any] struct {
  root    *node[K, V]
  compare func(K, K) int
}

以泛型类型Set为例,其使用方法如下:

var s = Set[string]{}
s["key1"] = "value1"
println(s["key1"]) // value1

泛型方法

Go类型可以拥有自己的方法(method),泛型类型也不例外,为泛型类型定义的方法称为泛型方法(generic method)。

type Set[T comparable] map[T]string

func (s Set[T]) Insert(key T, val string) {
    s[key] = val
}

func (s Set[T]) Get(key T) (string, error) {
    val, ok := s[key]
    if !ok {
        return "", errors.New("not found")
    }
    return val, nil
}

func main() {
    var s = Set[string]{
        "key": "value1",
    }
    s.Insert("key2", "value2")
    v, err := s.Get("key2")
    fmt.Println(v, err) // value2 <nil>
}

类型约束

Go通过类型约束(constraint)对泛型函数的类型参数以及泛型函数中的实现代码设置限制。Go使用扩展语法后的interface类型来定义约束。

下面是使用常规接口类型作为约束的例子:

type Stringer interface {
    String() string
}

func Stringify[T fmt.Stringer](s []T) (ret []string) { // 通过Stringer约束了T的实参只能是实现了Stringer接口的类型
    for _, v := range s {
        ret = append(ret, v.String())
    }
    return ret
}

Go接口类型声明语法做了扩展,支持在接口类型中放入类型元素(type element)信息:

type ordered interface {
    ~int | ~int8 | ~int16 | ~int32 | ~int64 |
        ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
        ~float32 | ~float64 | ~string
}

func Less[T ordered](a, b T) bool {
    return a < b
}

type Person struct {
    name string
    age  int
}

func main() {
    println(Less(1, 2)) // true
    println(Less(Person{"tony", 11}, Person{"tom", 23})) // Person不满足ordered的约束,会导致编译错误
}

并发

Go语言原生支持并发,Go并没有使用操作系统线程作为并发的基本执行单元,而是实现了goroutine这一由Go运行时(runtime)负责调度的、轻量的用户级线程,为并发程序设计提供原生支持。

goroutine

通过go关键字+函数/方法的方式,我们便可以创建一个goroutine。创建后,新goroutine将拥有独立的代码执行流,并与创建它的goroutine一起被Go运行时调度。

go fmt.Println("I am a goroutine")

// $GOROOT/src/net/http/server.go
c := srv.newConn(rw)
go c.serve(connCtx)

goroutine的执行函数返回后,goroutine便退出。如果是主goroutine(执行main.main的goroutine)退出,那么整个Go应用进程将会退出,程序生命周期结束。

channel

Go提供了原生的用于goroutine之间通信的机制channel,channel的定义与操作方式如下:

// channel类型
chan T          // 一个元素类型为T的channel类型
chan<- float64  // 一个元素类型为float64的只发送channel类型
<-chan int      // 一个元素类型为int的只接收channel类型

var c chan int             // 声明一个元素类型为int的channel类型的变量,初值为nil
c1 := make(chan int)       // 声明一个元素类型为int的无缓冲的channel类型的变量
c2 := make(chan int, 100)  // 声明一个元素类型为int的带缓冲的channel类型的变量,缓冲大小为100
close(c)                   // 关闭一个channel

下面是两个goroutine基于channel通信的例子:

func main() {
    var c = make(chan int)
    go func(a, b int) {
        c <- a + b
    }(3,4)
    println(<-c) // 7
}

当涉及同时对多个channel进行操作时,Go提供了select机制。通过select,我们可以同时在多个channel上进行发送/接收操作:

select {
case x := <-ch1:     // 从channel ch1接收数据
  ... ...

case y, ok := <-ch2: // 从channel ch2接收数据,并根据ok值判断ch2是否已经关闭
  ... ...

case ch3 <- z:       // 将z值发送到channel ch3中:
  ... ...

default:             // 当上面case中的channel通信均无法实施时,执行该默认分支
}

错误处理

Go提供了简单的、基于错误值比较的错误处理机制,这种机制让每个开发人员必须显式地去关注和处理每个错误。

error类型

Go用error这个接口类型表示错误,并且按惯例,我们通常将error类型返回值放在返回值列表的末尾。

// $GOROOT/src/builtin/builtin.go
type error interface {
    Error() string
}

任何实现了error的Error方法的类型的实例,都可以作为错误值赋值给error接口变量。

Go提供了便捷的构造错误值的方法:

err := errors.New("your first demo error")
errWithCtx = fmt.Errorf("index %d is out of bounds", i)

错误处理形式

Go最常见的错误处理形式如下:

err := doSomething()
if err != nil {
    ... ...
    return err
}

通常我们会定义一些“哨兵”错误值来辅助错误处理方检视(inspect)错误值并做出错误处理分支的决策:

// $GOROOT/src/bufio/bufio.go
var (
    ErrInvalidUnreadByte = errors.New("bufio: invalid use of UnreadByte")
    ErrInvalidUnreadRune = errors.New("bufio: invalid use of UnreadRune")
    ErrBufferFull        = errors.New("bufio: buffer full")
    ErrNegativeCount     = errors.New("bufio: negative count")
)

func doSomething() {
    ... ...
    data, err := b.Peek(1)
    if err != nil {
        switch err {
        case bufio.ErrNegativeCount:
            // ... ...
            return
        case bufio.ErrBufferFull:
            // ... ...
            return
        case bufio.ErrInvalidUnreadByte:
            // ... ...
            return
        default:
            // ... ...
            return
        }
    }
    ... ...
}

Is和As

从Go 1.13版本开始,标准库errors包提供了Is函数用于错误处理方对错误值的检视。Is函数类似于把一个error类型变量与“哨兵”错误值进行比较:

// 类似 if err == ErrOutOfBounds{ … }
if errors.Is(err, ErrOutOfBounds) {
    // 越界的错误处理
}

不同的是,如果error类型变量的底层错误值是一个包装错误(Wrapped Error),errors.Is方法会沿着该包装错误所在错误链(Error Chain),与链上所有被包装的错误(Wrapped Error)进行比较,直至找到一个匹配的错误为止。

标准库errors包还提供了As函数给错误处理方检视错误值。As函数类似于通过类型断言判断一个error类型变量是否为特定的自定义错误类型:

// 类似 if e, ok := err.(*MyError); ok { … }
var e *MyError
if errors.As(err, &e) {
    // 如果err类型为*MyError,变量e将被设置为对应的错误值
}

如果error类型变量的动态错误值是一个包装错误,errors.As函数会沿着该包装错误所在错误链,与链上所有被包装的错误的类型进行比较,直至找到一个匹配的错误类型,就像errors.Is函数那样。

小结

读到这里,你已经对Go语言有了入门级的认知,但要想成为一名Gopher(对Go开发人员的称呼),还需要更进一步的学习与实践。我的极客时间专栏《Go语言第一课》是一个很好的起点,欢迎大家订阅学习^_^。

BTW,本文部分内容由ChatGPT生成!你能猜到是哪些部分吗^_^。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats