标签 并发 下的文章

Go 作为第一门编程语言:天才之选还是糟糕开端?

本文永久链接 – https://tonybai.com/2025/10/11/go-is-a-good-first-programming-language

大家好,我是Tony Bai。

近日,在 r/golang 社区,一个初学者的真诚提问,再次点燃了一场关于 Go 是否适合作为入门语言的激烈辩论。他很困惑:“为什么很多经验丰富的开发者说 Go 不适合作为第一门编程语言,而很多大学却用与之相似的 C 语言作为第一门编程语言呢?”

这个问题,如同一块探针,深入到了编程教育的核心分歧之中,并迅速将社区观点分裂为两大阵营。一方认为,Go 能从第一天起就培养严谨的工程思维,堪称“天才之选”。另一方则认为,它的定位不上不下,对初学者而言是一个“糟糕的开端”

那么,真相究竟为何?为了厘清思路,让我们深入这场辩论,分别听取两大阵营的观点,并审视其背后的根本分歧:我们学习编程,到底是为了什么?

观点一:Go 是一个“糟糕的开端”

这一方的核心论点是:Go 语言陷入了一个尴尬的“中间地带”,对于编程教育的两个主要目标,它都未能完美胜任。

论据一:Go 不够底层,无法胜任“计算机科学基础教育”

这一方的支持者指出,大学 CS 教育的首要目标,是培养学生对计算机工作原理的深刻理解。在这个目标下,C 语言之所以是“黄金标准”,恰恰在于它的“不友好”:

  • 直面内存:手动 malloc/free 和危险的指针算术,迫使学生直面内存布局、栈与堆等核心概念。
  • 最小化抽象:学生必须从零开始构建数据结构,这个过程能让他们对算法的理解建立在物理实现之上。

而Go 的垃圾回收 (GC) 机制,虽然是工程上的巨大进步,但在教育上却成了一个“黑盒”,完全隐藏了内存管理的复杂性。它让学生“知其然”,却无法“知其所以然”,因此无法胜任传授底层原理的重任。

论据二:Go 不够“温柔”,无法胜任“快速入门与兴趣培养”

接着,这一方展示了另一个极端——以 Python 为代表的“实战派”入门语言。这类语言的目标是让初学者尽快体验到编程的乐趣和效用。

  • 语法“温柔”:Python 的语法接近伪代码,极大地降低了入门的认知门槛。
  • 快速反馈:作为解释型语言,其“编写即运行”的交互式体验,对维持初学者的学习热情至关重要。

尽管 Go 也以简单著称,但其静态类型、编译周期、以及对项目结构的规范要求,都为纯粹的初学者制造了不必要的“摩擦力”。与 Python 相比,它不够“温柔”,可能会在入门阶段就劝退一部分学习者。

由此来看,Go 既不像 C 那样能让你深入底层,又不像 Python 那样能让你轻松起步。它是一个尴尬的“中间派”,对于任何一个明确的教学目标来说,都有比它更好的选择。因此,它是一个“糟糕的开端”。

观点二:Go 是一个“天才之选”

另一方的核心论点是:观点一中所说的“中间地带”并非尴尬,而是一个经过深思熟虑、精心设计的“甜蜜点” (sweet spot)。Go 的目标,不是培养纯粹的理论家或业余爱好者,而是从第一天起,就为培养专业的“软件工程师”奠定基础

论据一:Go 教授的是“更重要”的底层原理

观点二的支持者承认 Go 隐藏了手动内存管理的细节,但他们认为,在 2025 年的今天,这部分细节的教学价值正在下降。相反,Go 教授了更现代、更重要的底层概念:

  • 安全的指针哲学:Go 保留了指针,让学生能够深刻理解“引用 vs. 值”这一核心概念,这是理解程序性能和行为的关键。同时,它通过移除指针算术,杜绝了 C 语言中最常见的一类安全漏洞。
  • 并发是第一性原理:他们强调,现代计算的核心是并发。Go 将 goroutine 和 channel 作为内建特性,让学生能够以一种前所未有的简洁方式,去接触和理解并发这一现代计算机科学的基石。

Go 并非不教底层,而是有选择地教授那些在现代软件工程中依然至关重要的底层概念,同时将那些日益自动化、易出错的细节(如手动内存管理)抽象掉。

论据二:Go 的“摩擦力”恰恰是良好工程习惯的开端

观点二的支持者认为,观点一所说的“摩擦力”,实际上是宝贵的“纪律训练”:

  • 静态类型:不是负担,而是一张安全网,它教会学生思考数据的结构和契约。TypeScript逐步超越JavaScript就是一个静态类型取得胜利的明证。
  • 显式错误处理:if err != nil 不是样板代码,而是对健壮性最深刻的、日复一日的训练。它让学生明白,失败是程序中正常的一部分,必须被认真对待
  • 编译周期:不是障碍,而是专业开发流程的预演,教会学生区分构建时和运行时。

Go 的设计,完美地平衡了抽象与细节。它既能让学生快速构建出实际的应用(比如一个简单的 Web 服务器),又在整个过程中不断地、潜移默化地向他们灌输专业的工程思想。它不是在教“编程”,而是在教“软件工程”。因此,对于立志成为专业工程师的学习者来说,它是一个“天才之选”

小结:目标决定了最佳路径

至此,辩论的脉络已经清晰。这场争论没有绝对的赢家,因为双方的论点都建立在各自合理的目标之上。

最终的结论是:这取决于你的目标。

  • 如果你的目标是成为一名计算机科学家,深入理解机器的每一个齿轮如何运转,那么从 C 开始的“苦修”或许无法绕开。
  • 如果你的目标是快速体验编程的乐趣、尽快构建应用,那么 Python 或 JavaScript 可能会为你提供一条更平坦、更愉悦的道路。
  • 而 Go,则为那些从一开始就立志于成为一名专业、高效、能构建并发系统的现代软件工程师的学习者,提供了一条无与伦比的捷径。

它或许不是最完美的“第一站”,但对于目标明确的人来说,它是一个能让你赢在起跑线上的“天才之选”。它将“学习编程”与“成为一名软件工程师”这两个阶段,以前所未有的方式紧密地结合在了一起。

资料链接:https://www.reddit.com/r/golang/comments/1nvbrv8/im_confused_as_to_why_experienced_devs_say_go_is/


想系统学习Go,构建扎实的知识体系?

我的新书《Go语言第一课》是你的首选。源自2.4万人好评的极客时间专栏,内容全面升级,同步至Go 1.24。首发期有专属五折优惠,不到40元即可入手,扫码即可拥有这本300页的Go语言入门宝典,即刻开启你的Go语言高效学习之旅!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

并发测试神器 synctest的“成人礼”:从goroutine泄漏到微妙的竞态,Go团队如何修复三大“首日bug”?

本文永久链接 – https://tonybai.com/2025/09/29/synctest-bugs-in-go-1-25

大家好,我是Tony Bai。

Go 1.25的发布,为我们带来了一个期待已久的“并发测试神器”—— testing/synctest。这个在Go 1.24中作为实验性功能首次亮相的包,承诺将我们从time.Sleep、channel和各种脆弱的同步技巧中解放出来,让我们能够编写出快速、可靠、确定性的并发测试。

然而,任何强大的新工具在投入真实世界的熔炉后,都必然会经历一场严酷的“成人礼”。Go 1.25发布后,社区的早期使用者们迅速将其应用于各种复杂的并发场景,并遇到了一些隐藏在“气泡”(bubble)之下的微妙问题。

本文将聚焦于三个典型的、由社区报告的synctest“首日bug” (#75052, #74837, #75134),它们分别涉及了io.Pipe、context和sync.WaitGroup这三个常用并发原语。需要澄清的是,这些所谓“Bug”并非都是synctest本身的Bug。它们有的源于开发者对并发原语的常见误用,synctest只是更严格地揭示了问题;有的则反映了一个实验性API在社区反馈下的设计演进;当然,其中也包含了一个深藏在运行时中的、真正的实现Bug

通过剖析这些案例,我们不仅能学会如何正确、安全地使用synctest,更能一窥这个新范式背后的设计哲学、Go团队的应对智慧以及它如何帮助我们编写更健壮的并发代码。

Bug 1: io.Pipe与context的“谎言”—— Goroutine泄漏之谜

一位开发者在迁移测试到synctest后,遇到了一个神秘的panic:panic: deadlock: main bubble goroutine has exited but blocked goroutines remain。这通常意味着测试中存在goroutine泄漏。

你可以将以下代码保存为leak_test.go并运行go test来复现这个panic。

// synctest-bugs/bug1/leak_test.go
package main_test

import (
    "context"
    "io"
    "testing"
    "testing/synctest"
)

func TestGoroutineLeakWithPipe(t *testing.T) {
    synctest.Test(t, func(t *testing.T) {
        pr, pw := io.Pipe()

        // 这个后台goroutine在pr上阻塞读取,等待数据或EOF
        go func() {
            io.ReadAll(pr)
        }()

        ctx, cancel := context.WithCancel(context.Background())
        defer cancel()

        // 主测试goroutine错误地认为cancel()可以结束测试
        // 但实际上,后台goroutine仍在pr上阻塞
        _ = pw
        _ = ctx
    })
    // 当synctest.Test返回时,它检测到后台goroutine没有退出,
    // 于是触发panic,报告goroutine泄漏。
}

在Go 1.25.0下运行上述测试,我们会得到类似下面的panic:

$go test
--- FAIL: TestGoroutineLeakWithPipe (0.00s)
panic: deadlock: main bubble goroutine has exited but blocked goroutines remain [recovered, repanicked]
... ...

经过Go团队分析,该问题根源被定位为:被遗忘的Reader:

  • io.Pipe的行为: io.PipeReader上的Read会一直阻塞,直到PipeWriter写入了数据,或者PipeWriter被关闭(发送EOF信号)
  • context的局限: context.Cancel()的信号无法神奇地中断底层的I/O操作,因为它没有与io.Pipe进行任何形式的集成。

在问题代码中,cancel()被调用,但pw(PipeWriter)从未被关闭。因此,后台的reader goroutine被永远地阻塞了,导致了synctest检测到的泄漏。

解决方案很简单:在测试结束前,必须显式地关闭PipeWriter。

func TestGoroutineLeakFixed(t *testing.T) {
    synctest.Test(t, func(t *testing.T) {
        pr, pw := io.Pipe()
        defer pw.Close() // <--- 关键修复!

        go func() {
            io.ReadAll(pr)
        }()
        // ...
    })
}

pw.Close()会向pr发送一个EOF错误,安全地解除后台goroutine的阻塞。

为了避免后续发生类似使用问题,Go团队还是在synctest包增加了使用注释,以提醒使用者避免上述问题:

不过,synctest的严格性是一件好事。它像一个哨兵,将那些在传统测试中可能被掩盖的、潜在的goroutine泄漏问题,以一个明确的panic暴露出来。synctest不仅测试逻辑,还在检验你并发代码的“卫生状况”。

Bug 2: context与“气泡”边界的微妙冲突

另一个issue揭示了synctest与context包之间一个更深层次的交互问题,导致测试在“气泡”退出后神秘地挂起。

这个问题主要存在于Go 1.24的实验性API synctest.Run中,你可以通过下面的代码在GOEXPERIMENT=synctest下复现该问题:

// synctest-bugs/bug2/oldapi_test.go
package main_test

import (
    "context"
    "testing"
    "testing/synctest" // 假设这是Go 1.24的旧版本
)

// 这个测试在Go 1.24 + synctest.Run下会挂起
func TestContextBoundaryIssue(t *testing.T) {
    synctest.Run(func() { // 旧API
        _, cancel := context.WithCancel(t.Context())
        defer cancel()
    })
    // t.Cleanup() 中对 t.Context() 的 cancel 操作
    // 会在 "气泡" 外关闭一个 "气泡" 内的channel,引发panic和死锁。
}

这个问题的根源是跨“气泡”边界的非法操作:

  1. 在synctest.Run的函数体内,t.Context()返回的context属于“气泡”内部
  2. context.WithCancel为这个“气泡内”的context创建了一个done channel,这个channel也属于“气泡”
  3. 当测试函数返回,testing框架的t.Cleanup在“气泡”之外尝试关闭这个done channel。
  4. 这个跨边界的非法操作触发了synctest的panic。不幸的是,这个panic发生在context包内部的互斥锁还未释放时,后续的清理操作导致了死锁

Go 1.25正式版的API synctest.Test(t testing.T, func(t *testing.T) { … })完美地解决了这个问题。它会为“气泡”内部的执行创建一个作用域限定在“气泡”内的新testing.T,其生命周期与“气泡”完全绑定,从而避免了边界冲突。下面是使用新API后的运行正常的代码:

// synctest-bugs/bug2/newapi_test.go
package main

import (
        "context"
        "testing"
        "testing/synctest" // 这是Go 1.25的新版本
)

func Test(t *testing.T) {
        synctest.Test(t, func(t *testing.T) {
                _, cancel := context.WithCancel(t.Context())
                defer cancel()
        })
}

新版API下,synctest的“气泡”是一个严格的隔离边界,它不仅隔离时间和goroutine,还隔离了同步原语的“所有权”。编写synctest测试时,要时刻保持对“气泡”边界的敬畏。

Bug 3: sync.WaitGroup的并发“幽灵”

sync.WaitGroup是Go中最基础的并发原语之一,但在synctest中高并发地使用它时,却出现了莫名超时或panic的现象。

issue提出者给出一个在Go 1.25.0下复现该bug的代码:

// synctest-bugs/bug3/wg_race_test.go
package main_test

import (
    "context"
    "sync"
    "testing"
    "testing/synctest"
)

func TestSyncTest_Wait_Group(t *testing.T) {
    for range 1000 {
        doSyncTestWithChanel(t)
    }
}

func doSyncTestWithChanel(t *testing.T) {
    synctest.Test(t, func(t *testing.T) {
        ctx, cancel := context.WithCancel(context.Background())

        for range 100 {
            go func() {
                simpleWait(ctx)
            }()
        }

        synctest.Wait()
        cancel()
    })
}

func simpleWait(ctx context.Context) {
    var wg sync.WaitGroup
    for range 3 {
        wg.Go(func() {
            <-ctx.Done()
        })
    }
    wg.Wait()
}

使用Go 1.25.0运行该测试代码,会得到下面panic:

$ go test -bench .
fatal error: sync: WaitGroup.Add called from multiple synctest bubbles
... ...

问题的根源在于一个隐藏在Go运行时内部的细节。在synctest模式下,Go运行时需要追踪每一个sync.WaitGroup实例究竟属于哪个“气泡”。这是通过在WaitGroup首次被使用时,为其分配一个特殊的内部记录来实现的。

然而,在Go 1.25的早期版本中,这个分配操作没有被正确地加锁。当多个goroutine在高并发下同时初始化新的WaitGroup实例时,它们会并发地读写这个用于分配记录的全局数据结构,从而导致内存损坏或逻辑错乱。

解决方案非常直接:为这个内部记录的分配过程加上了正确的锁(mheap_.speciallock)。这个修复被迅速合并,并被紧急向后移植(backport)到了Go 1.25的发布分支中

由此bug也可以看到,testing/synctest的实现远不止是一个简单的库,它与Go的运行时和调度器进行了深度集成。这种集成赋予了它控制时间的强大能力,但也意味着它可能会暴露或引入极深层次的运行时bug。Go团队对这类问题的快速响应和紧急修复,也体现了他们对这个新API稳定性的高度重视。

小结:一个正在走向成熟的“并发测试新范式”

这三个“首日bug”的故事,非但没有削弱testing/synctest的价值,反而让我们更加清晰地看到了它的设计哲学和强大之处:

  • 它是严格的“教官”: 它会无情地暴露你代码中隐藏的goroutine泄漏和同步问题。
  • 它是精密的“仪器”: 它的“气泡”边界需要被精确理解和尊重。
  • 它是运行时的“延伸”: 它的稳定性依赖于与Go运行时的深度协同。

通过社区的积极反馈和Go团队的快速迭代,testing/synctest已经成功地度过了它的“成人礼”。它可能不会让并发测试变得“简单”,因为并发本身从不简单。但正如官方博客所说,它能让你编写出最简单的并发代码,使用最地道的Go和标准库,然后为它们编写出快速、可靠的测试。 这,或许就是它能带给我们的最大价值。

本文涉及的示例源码可以在这里下载。

如果你觉得今天的案例分析意犹未尽,渴望系统性地学习synctest的每一个细节,那么我诚挚地邀请你订阅我的微专栏——征服Go并发测试。在这三讲内容中,我们将深入剖析 Go 1.25 并发测试“新武器”——testing/synctest,从痛点到官方设计,再到实战案例,手把手教你用“气泡”与“合成时间”驯服并发猛兽,写出闪电般快速、坚如磐石的并发测试!点击此处或扫描下方二维码立即解锁,让你的 Go 并发技能跃迁!

img{512x368}

参考资料

  • https://github.com/golang/go/issues/75052
  • https://github.com/golang/go/issues/74837
  • https://github.com/golang/go/issues/75134

你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats