Go是如何缓解供应链攻击的[译]

本文永久链接 – https://tonybai.com/2022/04/02/how-go-mitigates-supply-chain-attacks

这些年来,关于软件供应链的安全问题频发,软件供应链已然成为IT安全领域的一个热点,在前不久的《聊聊Go语言的软件供应链安全》一文中我曾提到过Go在SBOM(软件物料清单)方面给开发人员带来的方便。这两天Go官博又发表了一篇由Go项目安全负责人Filippo Valsorda撰写的文章《How Go Mitigates Supply Chain Attacks》,系统总结了Go语言应对软件供应链方面攻击的“防护秘笈”。笔者觉得文章中提到的这些点是每个Gopher都应该知道的必备知识,于是这里将文章做简单翻译,供大家参考。


现代软件工程基于相互协作,并以重用开源软件为基础。但这也使软件项目成为了供应链攻击的目标,攻击方式就是破坏软件项目的依赖(dependencies)。

尽管知道这些,为了完成项目,我们需要依赖,我们会采取一些流程或技术措施在项目与依赖之间建立一种信任关系。好在,Go的工具链与设计可以帮助我们降低各个阶段的风险。

所有构建都是被“锁定(locked)”的

外部世界的变化,比如项目的某个依赖发布了一个新版本,是不会影响到Go的构建的。

与其他大多数软件包管理器(package manager)所使用的配置文件不同,Go module没有将存储约束列表的文件和锁定特定版本的lock文件分开管理,对任何Go构建作出贡献的每个依赖项的版本完全由main module的go.mod文件决定。

Go 1.16版本开始,Go命令默认按照这种确定性执行,如果go.mod不完整,构建命令(go build, go test, go install, go run, …)将失败。唯一可以改变go.mod文件(当然构建也会随之改变)的命令是go get和go mod tidy。这两个命令通常不会自动运行或在CI中运行,所以对依赖树的改变必须是主观故意的,我们可以在操作前对这种改变做代码评审。

这对安全非常重要,因为当CI系统或新机器运行时,签入(checked-in)的源码是最终的和完整的,代码将说明什么会被构建,第三方没有办法影响它。

此外,当用go get添加新依赖时,由于最小版本选择的存在,它的传递依赖(transitive dependencies)的指定版本,不是最新版本,也会被添加到go.mod文件中。同样的情况也发生在调用go install example.com/cmd/devtoolx@latest 的情况下,在某些生态系统中,同样的构建发生时会绕过“已锁定”的版本(译注:去获取依赖的最新版本)。但在Go中,example.com/cmd/devtoolx的最新版本将被获取,但其所有的依赖项的版本将取决于其go.mod文件中的设置。

如果一个module被破坏,新的恶意版本被发布,没有人会受到影响,直到他们明确地更新该依赖关系,这种方式为gopher提供了审查变化的机会,并为生态系统提供时间来检测该事件会引发的影响。

版本内容永不改变

确保第三方不能影响构建的另一个关键属性是,module版本的内容是不可改变的。如果一个破坏某依赖项的攻击者可以重新上传该依赖项的一个现有的版本,那么他就可以自动破坏所有依赖该依赖项的项目。

这就是go.sum文件的作用。它包含了对构建有贡献的每个依赖项的加密哈希值的列表。同样,一个不完整的go.sum会导致一个错误,并且只有go get和go mod tidy会修改它,所以对它的任何修改都会伴随着一个主观故意的依赖性的改变。其他的构建将被保证有一套完整的校验和。

这是大多数lock文件的一个共同特征。但Go通过校验和数据库(简称sumdb)领先了一步,sumdb是一个全局性的、仅可附加的(append)、加密验证的go.sum条目列表。当go get需要在go.sum文件中添加一个条目时,它从sumdb中获取该条目,并对sumdb的完整性进行加密证明。这不仅确保了某一module的每一次构建都使用相同的依赖,而且确保了每一个module都使用相同的依赖内容。

sumdb使那些试图用修改过的(例如放置后门的)源码来攻击特定依赖项变为不可能,甚至谷歌自己运维的Go基础设施也做不到。

它将保证你使用的代码与其他使用例如example.com/modulex v1.9.2的人所使用的代码完全相同,并且已经过审查。

最后,我最喜欢sumdb的特点:它不需要module作者的任何密钥管理,而且它与Go module的非中心化特性无缝连接。

VCS是真相之源

大多数项目是通过一些版本控制系统(VCS)开发的。在其他生态系统中,这些项目还需要被再次上传到中心软件包库(译注:比如js生态中的npm)。这意味着有两个账户可能被入侵,一个是VCS主机,另一个是中心软件包库。对后者的攻击使用得更少,也更容易被忽视。这也意味着在上传到中心仓库的版本中更容易隐藏恶意代码,尤其是当源码作为上传的一部分被例行修改时,比如说将其最小化(译注:比如js代码的压缩)。

在Go中,不存在中心包库账户这样的东西。包的导入路径包含了go mod download所需要的信息,以便go命令直接从VCS中获取其module,vcs上的标签定义了module的版本。

我们确实有Go Module Mirror,但那只是一个代理。module作者不需要注册账户,也不需要向代理上传版本。代理使用与go工具链相同的逻辑(事实上,代理运行go module download)来获取和缓存一个版本。由于校验数据库保证一个给定的module版本只能有一个源码树,每个使用代理的人都会看到从代理获取的结果与绕过代理直接从VCS获取的结果是相同的。(如果该版本在VCS中不再可用,或者其内容发生了变化,直接获取将导致错误,而从代理获取可能仍然有效,提高了可用性并保护生态系统免受“左键”问题的影响)。

在客户端运行VCS工具会暴露出一个相当大的攻击面。这也是Go module mirror的另一个作用:代理上的Go工具在一个强大的沙盒内运行,并被配置为支持所有的VCS工具,而默认的是只支持两个主要的VCS系统(git和Mercurial)。任何使用代理的人仍然可以获取使用非默认的VCS系统发布的代码,但攻击者在大多数安装中无法接触到这些代码。

仅构建代码,但并不会执行它

Go工具链的一个明确的安全设计目标是,无论是获取还是构建代码,都不会让代码执行,无论代码是否是不被信任的和恶意的。这与其他大多数生态系统不同,许多生态系统在获取软件包时对运行代码提供了first-class的支持。这些”post-install”的钩子在过去被用作一种最方便的攻击方式:通过受到攻击的依赖攻击开发者的机器,并通过module作者进行蠕虫攻击

公平地说,如果你要获取一些代码,往往会在不久之后执行,要么作为开发者机器上的测试的一部分,要么作为生产中的二进制文件的一部分,所以缺乏post-install钩子只会减缓攻击者。(在构建过程中没有安全边界:任何有助于构建的软件包都可以定义一个init函数)。然而,它可以成为一个有意义的风险缓解措施,因为你可能正在执行一个二进制文件或测试一个包,而这个包只使用module依赖的一个子集。例如,如果你在macOS上构建并执行example.com/cmd/devtoolx,那么针对Windows的依赖或example.com/cmd/othertool的依赖就不可能危害到你的机器。

在Go中,没有为特定构建提供代码的module对构建没有安全影响(译注:得益于Go 1.17引入的module依赖图修剪)。

“一点复制比一点依赖性好”

在Go生态系统中,最后一个可能也是最重要的软件供应链风险缓解措施,可能也是最没有技术含量的一个:Go有一种拒绝大型依赖树的文化,宁可复制一点也不愿意增加新的依赖关系。这可以追溯到Go的一个谚语:“一点复制比一点依赖性好”。”零依赖”的标签总是被高质量的可重复使用的Go module所自豪地佩戴。如果你发现自己需要一个这样的库,你很可能会发现它不会导致你依赖其他作者和所有者的几十个module。

丰富的标准库和附加module(golang.org/x/…的module)也使之成为可能,这些module提供了常用的高级构建模块,如HTTP栈、TLS库、JSON编码等。

所有这些意味着只需少量的依赖关系就可以建立丰富、复杂的应用程序。无论工具有多好,它都不能消除重复使用代码的风险,所以最有力的缓解措施永远是一个小的依赖树


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go社区主流Kafka客户端简要对比

本文永久链接 – https://tonybai.com/2022/03/28/the-comparison-of-the-go-community-leading-kakfa-clients

一. 背景

众所周知,Kafka是Apache开源基金会下的明星级开源项目,作为一个开源的分布式事件流平台,它被成千上万的公司用于高性能数据管道、流分析、数据集成和关键任务应用。在国内,无论大厂小厂,无论是自己部署还是用像阿里云提供的Kafka云服务,很多互联网应用已经离不开Kafka了。

互联网不拘泥于某种编程语言,但很多人不喜欢Kafka是由Scala/Java开发的。尤其是对于那些对某种语言有着“宗教般”虔诚、有着“手里拿着锤子,眼中满世界都是钉子”的程序员来说,总是有想重写Kafka的冲动。但就像很多新语言的拥趸想重写Kubernetes一样,Kafka已经建立起了巨大的起步和生态优势,短期很难建立起同样规格的巨型项目和对应的生态了(近两年同样火热的类Kafka的Apache pulsar创建时间与Kafka是先后脚的,只是纳入Apache基金会托管的时间较晚)。

Kafka生态很强大,各种编程语言都有对应的Kafka client。Kafka背后的那个公司confluent.inc也维护了各大主流语言的client:

其他主流语言的开发人员只需要利用好这些client端,做好与Kafka集群的连接就好了。好了做了这么多铺垫,下面说说为啥要写下这篇文章。

目前业务线生产环境的日志方案是这样的:

从图中我们看到:业务系统将日志写入Kafka,然后通过logstash工具消费日志并汇聚到后面的Elastic Search Cluster中供查询使用。 业务系统主要是由Java实现的,考虑到Kafka写失败的情况,为了防止log阻塞业务流程,业务系统使用了支持fallback appender的logback进行日志写入:这样当Kafka写入失败时,日志还可以写入备用的文件中,尽可能保证日志不丢失

考虑到复用已有的IT设施与方案,我们用Go实现的新系统也向这种不落盘的log汇聚方案靠拢,这就要求我们的logger也要支持向Kafka写入并且支持fallback机制。

我们的log包是基于uber zap封装而来的uber的zap日志包是目前Go社区使用最为广泛的、高性能的log包之一,第25期thoughtworks技术雷达也将zap列为试验阶段的工具推荐给大家,并且thoughtworks团队已经在大规模使用它:

不过,zap原生不支持写Kafka,但zap是可扩展的,我们需要为其增加写Kafka的扩展功能。而要写Kakfa,我们就离不开Kakfa Client包。目前Go社区主流的Kafka client有Shopify的sarama、Kafka背后公司confluent.inc维护的confluent-kafka-go以及segmentio/kafka-go

在这篇文章中,我就根据我的使用历程逐一说说我对这三个客户端的使用感受。

下面,我们首先先来看看star最多的Shopify/sarama。

二. Shopify/sarama:星多不一定代表优秀

目前在Go社区星星最多,应用最广的Kafka client包是Shopify的sarama。Shopify是一家国外的电商平台,我总是混淆Shopify、Shopee(虾皮)以及传闻中要赞助巴萨的Spotify(瑞典流媒体音乐平台),傻傻分不清^_^。

下面我就基于sarama演示一下如何扩展zap,让其支持写kafka。在《一文告诉你如何用好uber开源的zap日志库》一文中,我介绍过zap建构在zapcore之上,而zapcore由Encoder、WriteSyncer和LevelEnabler三部分组成,对于我们这个写Kafka的功能需求来说,我们只需要定义一个给一个WriteSyncer接口的实现,即可组装成一个支持向Kafka写入的logger

我们自顶向下先来看看创建logger的函数:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/zapkafka/log.go

type Logger struct {
    l     *zap.Logger // zap ensure that zap.Logger is safe for concurrent use
    cfg   zap.Config
    level zap.AtomicLevel
}

func (l *Logger) Info(msg string, fields ...zap.Field) {
    l.l.Info(msg, fields...)
}

func New(writer io.Writer, level int8, opts ...zap.Option) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    atomicLevel := zap.NewAtomicLevelAt(zapcore.Level(level))

    logger := &Logger{
        cfg:   zap.NewProductionConfig(),
        level: atomicLevel,
    }

    logger.cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format(time.RFC3339)) // 2021-11-19 10:11:30.777
    }
    logger.cfg.EncoderConfig.TimeKey = "logtime"

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(logger.cfg.EncoderConfig),
        zapcore.AddSync(writer),
        atomicLevel,
    )
    logger.l = zap.New(core, opts...)
    return logger
}

// SetLevel alters the logging level on runtime
// it is concurrent-safe
func (l *Logger) SetLevel(level int8) error {
    l.level.SetLevel(zapcore.Level(level))
    return nil
}

这段代码中没有与kafka client相关的内容,New函数用来创建一个*Logger实例,它接受的第一个参数为io.Writer接口类型,用于指示日志的写入位置。这里要注意一点的是:我们使用zap.AtomicLevel类型存储logger的level信息,基于zap.AtomicLevel的level支持热更新,我们可以在程序运行时动态修改logger的log level。这个也是在《一文告诉你如何用好uber开源的zap日志库》遗留问题的答案。

接下来,我们就基于sarama的AsyncProducer来实现一个满足zapcore.WriteSyncer接口的类型:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/zapkafka/kafka_syncer.go

type kafkaWriteSyncer struct {
    topic          string
    producer       sarama.AsyncProducer
    fallbackSyncer zapcore.WriteSyncer
}

func NewKafkaAsyncProducer(addrs []string) (sarama.AsyncProducer, error) {
    config := sarama.NewConfig()
    config.Producer.Return.Errors = true
    return sarama.NewAsyncProducer(addrs, config)
}

func NewKafkaSyncer(producer sarama.AsyncProducer, topic string, fallbackWs zapcore.WriteSyncer) zapcore.WriteSyncer {
    w := &kafkaWriteSyncer{
        producer:       producer,
        topic:          topic,
        fallbackSyncer: zapcore.AddSync(fallbackWs),
    }

    go func() {
        for e := range producer.Errors() {
            val, err := e.Msg.Value.Encode()
            if err != nil {
                continue
            }

            fallbackWs.Write(val)
        }
    }()

    return w
}

NewKafkaSyncer是创建zapcore.WriteSyncer的那个函数,它的第一个参数使用了sarama.AsyncProducer接口类型,目的是为了可以利用sarama提供的mock测试包。最后一个参数为fallback时使用的WriteSyncer参数。

NewKafkaAsyncProducer函数是用于方便用户快速创建sarama.AsyncProducer的,其中的config使用的是默认的config值。在config默认值中,Return.Successes的默认值都false,即表示客户端不关心向Kafka写入消息的成功状态,我们也无需单独建立一个goroutine来消费AsyncProducer.Successes()。但我们需要关注写入失败的消息,因此我们将Return.Errors置为true的同时在NewKafkaSyncer中启动了一个goroutine专门处理写入失败的日志数据,将这些数据写入fallback syncer中。

接下来,我们看看kafkaWriteSyncer的Write与Sync方法:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/zapkafka/kafka_syncer.go

func (ws *kafkaWriteSyncer) Write(b []byte) (n int, err error) {
    b1 := make([]byte, len(b))
    copy(b1, b) // b is reused, we must pass its copy b1 to sarama
    msg := &sarama.ProducerMessage{
        Topic: ws.topic,
        Value: sarama.ByteEncoder(b1),
    }

    select {
    case ws.producer.Input() <- msg:
    default:
        // if producer block on input channel, write log entry to default fallbackSyncer
        return ws.fallbackSyncer.Write(b1)
    }
    return len(b1), nil
}

func (ws *kafkaWriteSyncer) Sync() error {
    ws.producer.AsyncClose()
    return ws.fallbackSyncer.Sync()
}

注意:上面代码中的b会被zap重用,因此我们在扔给sarama channel之前需要将b copy一份,将副本发送给sarama。

从上面代码看,这里我们将要写入的数据包装成一个sarama.ProducerMessage,然后发送到producer的Input channel中。这里有一个特殊处理,那就是当如果msg阻塞在Input channel上时,我们将日志写入fallbackSyncer。这种情况是出于何种考虑呢?这主要是因为基于sarama v1.30.0版本的kafka logger在我们的验证环境下出现过hang住的情况,当时的网络可能出现过波动,导致logger与kafka之间的连接出现过异常,我们初步怀疑就是这个位置阻塞,导致业务被阻塞住了。在sarama v1.32.0版本中有一个fix,和我们这个hang的现象很类似。

但这么做也有一个严重的问题,那就是在压测中,我们发现大量日志都无法写入到kafka,而是都写到了fallback syncer中。究其原因,我们在sarama的async_producer.go中看到:input channel是一个unbuffered channel,而从input channel读取消息的dispatcher goroutine也仅仅有一个,考虑到goroutine的调度,大量日志写入fallback syncer就不足为奇了:

// github.com/Shopify/sarama@v1.32.0/async_producer.go
func newAsyncProducer(client Client) (AsyncProducer, error) {
    // Check that we are not dealing with a closed Client before processing any other arguments
    if client.Closed() {
        return nil, ErrClosedClient
    }

    txnmgr, err := newTransactionManager(client.Config(), client)
    if err != nil {
        return nil, err
    }

    p := &asyncProducer{
        client:     client,
        conf:       client.Config(),
        errors:     make(chan *ProducerError),
        input:      make(chan *ProducerMessage), // 笔者注:这是一个unbuffer channel
        successes:  make(chan *ProducerMessage),
        retries:    make(chan *ProducerMessage),
        brokers:    make(map[*Broker]*brokerProducer),
        brokerRefs: make(map[*brokerProducer]int),
        txnmgr:     txnmgr,
    }
    ... ...
}

有人说这里可以加定时器(Timer)做超时,要知道日志都是在程序执行的关键路径上,每写一条log就启动一个Timer感觉太耗了(即便是Reset重用Timer)。如果sarama在任何时候都不会hang住input channel,那么在Write方法中我们还是不要使用select-default这样的trick

sarama的一个不错的地方是提供了mocks测试工具包,该包既可用于sarama的自测,也可以用作依赖sarama的go包的自测,以上面的实现为例,我们可以编写基于mocks测试包的一些test:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/zapkafka/log_test.go

func TestWriteFailWithKafkaSyncer(t *testing.T) {
    config := sarama.NewConfig()
    p := mocks.NewAsyncProducer(t, config)

    var buf = make([]byte, 0, 256)
    w := bytes.NewBuffer(buf)
    w.Write([]byte("hello"))
    logger := New(NewKafkaSyncer(p, "test", NewFileSyncer(w)), 0)

    p.ExpectInputAndFail(errors.New("produce error"))
    p.ExpectInputAndFail(errors.New("produce error"))

    // all below will be written to the fallback sycner
    logger.Info("demo1", zap.String("status", "ok")) // write to the kafka syncer
    logger.Info("demo2", zap.String("status", "ok")) // write to the kafka syncer

    // make sure the goroutine which handles the error writes the log to the fallback syncer
    time.Sleep(2 * time.Second)

    s := string(w.Bytes())
    if !strings.Contains(s, "demo1") {
        t.Errorf("want true, actual false")
    }
    if !strings.Contains(s, "demo2") {
        t.Errorf("want true, actual false")
    }

    if err := p.Close(); err != nil {
        t.Error(err)
    }
}

测试通过mocks.NewAsyncProducer返回满足sarama.AsyncProducer接口的实现。然后设置expect,针对每条消息都要设置expect,这里写入两条日志,所以设置了两次。注意:由于我们是在一个单独的goroutine中处理的Errors channel,因此这里存在一些竞态条件。在并发程序中,Fallback syncer也一定要支持并发写,zapcore提供了zapcore.Lock可以用于将一个普通的zapcore.WriteSyncer包装成并发安全的WriteSyncer。

不过,使用sarama的过程中还遇到过一个“严重”的问题,那就是有些时候数据并没有完全写入到kafka。我们去掉针对input channel的select-default操作,然后创建一个concurrent-write小程序,用于并发的向kafka写入log:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/zapkafka/cmd/concurrent_write/main.go

func SaramaProducer() {
    p, err := log.NewKafkaAsyncProducer([]string{"localhost:29092"})
    if err != nil {
        panic(err)
    }
    logger := log.New(log.NewKafkaSyncer(p, "test", zapcore.AddSync(os.Stderr)), int8(0))
    var wg sync.WaitGroup
    var cnt int64

    for j := 0; j < 10; j++ {
        wg.Add(1)
        go func(j int) {
            var value string
            for i := 0; i < 10000; i++ {
                now := time.Now()
                value = fmt.Sprintf("%02d-%04d-%s", j, i, now.Format("15:04:05"))
                logger.Info("log message:", zap.String("value", value))
                atomic.AddInt64(&cnt, 1)
            }
            wg.Done()
        }(j)
    }

    wg.Wait()
    logger.Sync()
    println("cnt =", atomic.LoadInt64(&cnt))
    time.Sleep(10 * time.Second)
}

func main() {
    SaramaProducer()
}

我们用kafka官方提供的docker-compose.yml在本地启动一个kafka服务:

$cd benchmark
$docker-compose up -d

然后我们使用kafka容器中自带的consumer工具从名为test的topic中消费数据,消费的数据重定向到1.log中:

$docker exec benchmark_kafka_1 /bin/kafka-console-consumer --bootstrap-server localhost:9092 --topic test --from-beginning > 1.log 2>&1

然后我们运行concurrent_write:

$ make
$./concurrent_write > 1.log 2>&1

concurrent_write程序启动了10个goroutine,每个goroutine向kafka写入1w条日志,多数情况下在benchmark目录下的1.log都能看到10w条日志记录,但在使用sarama v1.30.0版本时有些时候看到的是少于10w条的记录,至于那些“丢失”的记录则不知在何处了。使用sarama v1.32.0时,这种情况还尚未出现过。

好了,是时候看看下一个kafka client包了!

三. confluent-kafka-go:需要开启cgo的包还是有点烦

confluent-kafka-go包是kafka背后的技术公司confluent.inc维护的Go客户端,也可以算是Kafka官方Go客户端了。不过这个包唯一的“问题”在于它是基于kafka c/c++库librdkafka构建而成,这意味着一旦你的Go程序依赖confluent-kafka-go,你就很难实现Go应用的静态编译,也无法实现跨平台编译。由于所有业务系统都依赖log包,一旦依赖confluent-kafka-go只能动态链接,我们的构建工具链全需要更改,代价略大。

不过confluent-kafka-go使用起来也很简单,写入性能也不错,并且不存在前面sarama那样的“丢消息”的情况,下面是一个基于confluent-kafka-go的producer示例:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/confluent-kafka-go-static-build/producer.go

func ReadConfig(configFile string) kafka.ConfigMap {
    m := make(map[string]kafka.ConfigValue)
    file, err := os.Open(configFile)
    if err != nil {
        fmt.Fprintf(os.Stderr, "Failed to open file: %s", err)
        os.Exit(1)
    }
    defer file.Close()

    scanner := bufio.NewScanner(file)
    for scanner.Scan() {
        line := strings.TrimSpace(scanner.Text())
        if !strings.HasPrefix(line, "#") && len(line) != 0 {
            kv := strings.Split(line, "=")
            parameter := strings.TrimSpace(kv[0])
            value := strings.TrimSpace(kv[1])
            m[parameter] = value
        }
    }

    if err := scanner.Err(); err != nil {
        fmt.Printf("Failed to read file: %s", err)
        os.Exit(1)
    }
    return m
}

func main() {
    conf := ReadConfig("./producer.conf")

    topic := "test"
    p, err := kafka.NewProducer(&conf)
    var mu sync.Mutex

    if err != nil {
        fmt.Printf("Failed to create producer: %s", err)
        os.Exit(1)
    }
    var wg sync.WaitGroup
    var cnt int64

    // Go-routine to handle message delivery reports and
    // possibly other event types (errors, stats, etc)
    go func() {
        for e := range p.Events() {
            switch ev := e.(type) {
            case *kafka.Message:
                if ev.TopicPartition.Error != nil {
                    fmt.Printf("Failed to deliver message: %v\n", ev.TopicPartition)
                } else {
                    fmt.Printf("Produced event to topic %s: key = %-10s value = %s\n",
                        *ev.TopicPartition.Topic, string(ev.Key), string(ev.Value))
                }
            }
        }
    }()

    for j := 0; j < 10; j++ {
        wg.Add(1)
        go func(j int) {
            var value string
            for i := 0; i < 10000; i++ {
                key := ""
                now := time.Now()
                value = fmt.Sprintf("%02d-%04d-%s", j, i, now.Format("15:04:05"))
                mu.Lock()
                p.Produce(&kafka.Message{
                    TopicPartition: kafka.TopicPartition{Topic: &topic, Partition: kafka.PartitionAny},
                    Key:            []byte(key),
                    Value:          []byte(value),
                }, nil)
                mu.Unlock()
                atomic.AddInt64(&cnt, 1)
            }
            wg.Done()
        }(j)
    }

    wg.Wait()
    // Wait for all messages to be delivered
    time.Sleep(10 * time.Second)
    p.Close()
}

这里我们还是使用10个goroutine向kafka各写入1w消息,注意:默认使用kafka.NewProducer创建的Producer实例不是并发安全的,所以这里用一个sync.Mutex对其Produce调用进行同步管理。我们可以像sarama中的例子那样,在本地启动一个kafka服务,验证一下confluent-kafka-go的运行情况。

由于confluent-kafka-go包基于kafka c库而实现,所以我们没法关闭CGO,如果关闭CGO,将遇到下面编译问题:

$CGO_ENABLED=0 go build
# producer
./producer.go:15:42: undefined: kafka.ConfigMap
./producer.go:17:29: undefined: kafka.ConfigValue
./producer.go:50:18: undefined: kafka.NewProducer
./producer.go:85:22: undefined: kafka.Message
./producer.go:86:28: undefined: kafka.TopicPartition
./producer.go:86:75: undefined: kafka.PartitionAny

因此,默认情况依赖confluent-kafka-go包的Go程序会采用动态链接,通过ldd查看编译后的程序结果如下(on CentOS):

$make build
$ldd producer
    linux-vdso.so.1 =>  (0x00007ffcf87ec000)
    libm.so.6 => /lib64/libm.so.6 (0x00007f473d014000)
    libdl.so.2 => /lib64/libdl.so.2 (0x00007f473ce10000)
    libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f473cbf4000)
    librt.so.1 => /lib64/librt.so.1 (0x00007f473c9ec000)
    libc.so.6 => /lib64/libc.so.6 (0x00007f473c61e000)
    /lib64/ld-linux-x86-64.so.2 (0x00007f473d316000)

那么在CGO开启的情况下是否可以静态编译呢?理论上是可以的。这个在我的《Go语言精进之路》中关于CGO一节有详细说明。

不过confluent-kafka-go包官方目前确认还不支持静态编译。我们来试试在CGO开启的情况下,对其进行静态编译:

// on CentOS
$ go build -buildvcs=false -o producer-static -ldflags '-linkmode "external" -extldflags "-static"'
$ producer
/root/.bin/go1.18beta2/pkg/tool/linux_amd64/link: running gcc failed: exit status 1
/usr/bin/ld: 找不到 -lm
/usr/bin/ld: 找不到 -ldl
/usr/bin/ld: 找不到 -lpthread
/usr/bin/ld: 找不到 -lrt
/usr/bin/ld: 找不到 -lpthread
/usr/bin/ld: 找不到 -lc
collect2: 错误:ld 返回 1

静态链接会将confluent-kafka-go的c语言部分的符号进行静态链接,这些符号可能在libc、libpthread等c运行时库或系统库中,但默认情况下,CentOS是没有安装这些库的.a(archive)版本的。我们需要手动安装:

$yum install glibc-static

安装后,我们再执行上面的静态编译命令:

$go build -buildvcs=false -o producer-static -ldflags '-linkmode "external" -extldflags "-static"'
$ producer
/root/go/pkg/mod/github.com/confluentinc/confluent-kafka-go@v1.8.2/kafka/librdkafka_vendor/librdkafka_glibc_linux.a(rddl.o):在函数‘rd_dl_open’中:
(.text+0x1d): 警告:Using 'dlopen' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking
/root/go/pkg/mod/github.com/confluentinc/confluent-kafka-go@v1.8.2/kafka/librdkafka_vendor/librdkafka_glibc_linux.a(rdaddr.o):在函数‘rd_getaddrinfo’中:
(.text+0x440): 警告:Using 'getaddrinfo' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking

这回我们的静态编译成功了!

$ ldd producer-static
    不是动态可执行文件

但有一些警告!我们先不理这些警告,试试编译出来的producer-static是否可用。使用docker-compose启动本地kafka服务,执行producer-static,我们发现程序可以正常将10w消息写入kafka,中间没有错误发生。至少在producer场景下,应用并没有执行包含dlopen、getaddrinfo的代码。

不过这不代表在其他场景下上面的静态编译方式没有问题,因此还是等官方方案出炉吧。或者使用builder容器构建你的基于confluent-kafka-go的程序。

我们继续往下看segmentio/kafka-go。

四. segmentio/kafka-go:sync很慢,async很快!

和sarama一样,segmentio/kafka-go也是一个纯go实现的kafka client,并且在很多公司的生产环境经历过考验,segmentio/kafka-go提供低级conn api和高级api(reader和writer),以writer为例,相对低级api,它是并发safe的,还提供连接保持和重试,无需开发者自己实现,另外writer还支持sync和async写、带context.Context的超时写等。

不过Writer的sync模式写十分慢,1秒钟才几十条,但async模式就飞快了!

不过和confluent-kafka-go一样,segmentio/kafka-go也没有像sarama那样提供mock测试包,我们需要自己建立环境测试。kafka-go官方的建议时:在本地启动一个kafka服务,然后运行测试。在轻量级容器十分流行的时代,是否需要mock还真是一件值得思考的事情

segmentio/kafka-go的使用体验非常棒,至今没有遇到过什么大问题,这里不举例了,例子见下面benchmark章节。

五. 写入性能

即便是简要对比,也不能少了benchmark。这里针对上面三个包分别建立了顺序benchmark和并发benchmark的测试用例:

// https://github.com/bigwhite/experiments/blob/master/kafka-clients/benchmark/kafka_clients_test.go

var m = []byte("this is benchmark for three mainstream kafka client")

func BenchmarkSaramaAsync(b *testing.B) {
    b.ReportAllocs()
    config := sarama.NewConfig()
    producer, err := sarama.NewAsyncProducer([]string{"localhost:29092"}, config)
    if err != nil {
        panic(err)
    }

    message := &sarama.ProducerMessage{Topic: "test", Value: sarama.ByteEncoder(m)}

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        producer.Input() <- message
    }
}

func BenchmarkSaramaAsyncInParalell(b *testing.B) {
    b.ReportAllocs()
    config := sarama.NewConfig()
    producer, err := sarama.NewAsyncProducer([]string{"localhost:29092"}, config)
    if err != nil {
        panic(err)
    }

    message := &sarama.ProducerMessage{Topic: "test", Value: sarama.ByteEncoder(m)}

    b.ResetTimer()

    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            producer.Input() <- message
        }
    })
}

func BenchmarkKafkaGoAsync(b *testing.B) {
    b.ReportAllocs()
    w := &kafkago.Writer{
        Addr:     kafkago.TCP("localhost:29092"),
        Topic:    "test",
        Balancer: &kafkago.LeastBytes{},
        Async:    true,
    }

    c := context.Background()
    b.ResetTimer()

    for i := 0; i < b.N; i++ {
        w.WriteMessages(c, kafkago.Message{Value: []byte(m)})
    }
}

func BenchmarkKafkaGoAsyncInParalell(b *testing.B) {
    b.ReportAllocs()
    w := &kafkago.Writer{
        Addr:     kafkago.TCP("localhost:29092"),
        Topic:    "test",
        Balancer: &kafkago.LeastBytes{},
        Async:    true,
    }

    c := context.Background()
    b.ResetTimer()

    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            w.WriteMessages(c, kafkago.Message{Value: []byte(m)})
        }
    })
}

func ReadConfig(configFile string) ckafkago.ConfigMap {
    m := make(map[string]ckafkago.ConfigValue)

    file, err := os.Open(configFile)
    if err != nil {
        fmt.Fprintf(os.Stderr, "Failed to open file: %s", err)
        os.Exit(1)
    }
    defer file.Close()

    scanner := bufio.NewScanner(file)
    for scanner.Scan() {
        line := strings.TrimSpace(scanner.Text())
        if !strings.HasPrefix(line, "#") && len(line) != 0 {
            kv := strings.Split(line, "=")
            parameter := strings.TrimSpace(kv[0])
            value := strings.TrimSpace(kv[1])
            m[parameter] = value
        }
    }

    if err := scanner.Err(); err != nil {
        fmt.Printf("Failed to read file: %s", err)
        os.Exit(1)
    }

    return m

}

func BenchmarkConfluentKafkaGoAsync(b *testing.B) {
    b.ReportAllocs()
    conf := ReadConfig("./confluent-kafka-go.conf")

    topic := "test"
    p, _ := ckafkago.NewProducer(&conf)

    go func() {
        for _ = range p.Events() {
        }
    }()

    key := []byte("")
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        p.Produce(&ckafkago.Message{
            TopicPartition: ckafkago.TopicPartition{Topic: &topic, Partition: ckafkago.PartitionAny},
            Key:            key,
            Value:          m,
        }, nil)
    }
}

func BenchmarkConfluentKafkaGoAsyncInParalell(b *testing.B) {
    b.ReportAllocs()
    conf := ReadConfig("./confluent-kafka-go.conf")

    topic := "test"
    p, _ := ckafkago.NewProducer(&conf)

    go func() {
        for range p.Events() {
        }
    }()

    var mu sync.Mutex
    key := []byte("")
    b.ResetTimer()
    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            mu.Lock()
            p.Produce(&ckafkago.Message{
                TopicPartition: ckafkago.TopicPartition{Topic: &topic, Partition: ckafkago.PartitionAny},
                Key:            key,
                Value:          m,
            }, nil)
            mu.Unlock()
        }
    })
}

本地启动一个kafka服务,运行该benchmark:

$go test -bench .
goos: linux
goarch: amd64
pkg: kafka_clients
cpu: Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
BenchmarkSaramaAsync-4                            802070          2267 ns/op         294 B/op          1 allocs/op
BenchmarkSaramaAsyncInParalell-4                 1000000          1913 ns/op         294 B/op          1 allocs/op
BenchmarkKafkaGoAsync-4                          1000000          1208 ns/op         376 B/op          5 allocs/op
BenchmarkKafkaGoAsyncInParalell-4                1768538          703.4 ns/op        368 B/op          5 allocs/op
BenchmarkConfluentKafkaGoAsync-4                 1000000          3154 ns/op         389 B/op         10 allocs/op
BenchmarkConfluentKafkaGoAsyncInParalell-4        742476          1863 ns/op         390 B/op         10 allocs/op

我们看到,虽然sarama在内存分配上有优势,但综合性能上还是segmentio/kafka-go最优。

六. 小结

本文对比了Go社区的三个主流kafka客户端包:Shopify/sarama、confluent-kafka-go和segmentio/kafka-go。sarama应用最广,也是我研究时间最长的一个包,但坑也是最多的,放弃;confluent-kafka-go虽然是官方的,但是基于cgo,无奈放弃;最后,我们选择了segmentio/kafka-go,已经在线上运行了一段时间,至今尚未发现重大问题。

不过,本文的对比仅限于作为Producer这块的场景,是一个“不完全”的介绍。后续如有更多场景的实践经验,还会再补充。

本文中的源码可以在这里下载。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}
img{512x368}
img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats