Go程序员拥抱C语言简明指南

本文永久链接 – https://tonybai.com/2022/05/16/the-short-guide-of-embracing-c-lang-for-gopher

本文是为于航老师的极客时间专栏《深入C语言和程序运行原理》写的加餐文章《Tony Bai:Go程序员拥抱C语言简明指南》,这里分享给大家,尤其是那些想学习C语言的Gopher们。


你好,我是Tony Bai。

也许有同学对我比较熟悉,看过我在极客时间上的专栏《Tony Bai ·Go语言第一课》,或者是关注了我的博客。那么,作为一个Gopher,我怎么跑到这个C语言专栏做分享了呢?其实,在学习Go语言并成为一名Go程序员之前,我也曾是一名地地道道的C语言程序员。

大学毕业后,我就开始从事C语言后端服务开发工作,在电信增值领域摸爬滚打了十多年。不信的话,你可以去翻翻我的博客,数一数我发的C语言相关文章是不是比关于Go的还多。一直到近几年,我才将工作中的主力语言从C切换到了Go。不过这并不是C语言的问题,主要原因是我转换赛道了。我目前在智能网联汽车领域从事面向云原生平台的先行研发,而在云原生方面,新生代的Go语言有着更好的生态。

不过作为资深C程序员,C语言已经在我身上打下了深深的烙印。虽然Go是我现在工作中的主力语言,但我仍然会每天阅读一些C开源项目的源码,每周还会写下数百行的C代码。在一些工作场景中,特别是在我参与先行研发一些车端中间件时,C语言有着资源占用小、性能高的优势,这一点是Go目前还无法匹敌的。

正因为我有着C程序员和Go程序员的双重身份,接到这个加餐邀请时,我就想到了一个很适合聊的话题——在 Gopher(泛指Go程序员)与C语言之间“牵线搭桥”。在这门课的评论区里,我看到一些同学说,“正是因为学了Go,所以我想学好C”。如果你也对Go比较熟悉,那么恭喜你,这篇加餐简直是为你量身定制的:一个熟悉Go的程序员在学习C时需要注意的问题,还有可能会遇到的坑,我都替你总结好了。

当然,我知道还有一些对Go了解不多的同学,看到这里也别急着退出去。因为C和Go这两门语言的比较,本身就是一个很有意思的话题。今天的加餐,会涉及这两门语言的异同点,通过对C与Go语言特性的比较,你就能更好地理解“C 语言为什么设计成现在这样”。

一. C语言是现代IT工业的根基

在比较C和Go之前,先说说我推荐Gopher学C的最重要原因吧:用一句话总结,C语言在IT工业中的根基地位,是Go和其他语言目前都无法动摇的

C语言是由美国贝尔实验室的丹尼斯·里奇(Dennis Ritchie)以Unix发明人肯·汤普森(Ken Thompson)设计的B语言为基础而创建的高级编程语言。诞生于上个世纪(精确来说是1972年)的它,到今年(2022年)已到了“知天命”的半百年纪。 年纪大、设计久远一直是“C语言过时论”兴起的根源,但如果你相信这一论断,那就大错特错了。下面,我来为你分析下个中缘由。

首先,我们说说C语言本身:C语言一直在演进,从未停下过脚步

虽然C语言之父丹尼斯·里奇不幸于2011年永远地离开了我们,但C语言早已成为ANSI(美国国家标准学会)标准以及ISO/IEC(国际标准化组织和国际电工委员会)标准,因此其演进也早已由标准委员会负责。我们来简单回顾一下C语言标准的演进过程:

  • 1989年,ANSI发布了首个C语言标准,被称为C89,又称ANSI C。次年,ISO和IEC把ANSI C89标准定为C语言的国际标准(ISO/IEC 9899:1990),又称C90,它也是C语言的第一个官方版本;
  • 1999年,ISO和IEC发布了C99标准(ISO/IEC 9899:1999),它是C语言的第二个官方版本;
  • 2011年,ISO和IEC发布了C11标准(ISO/IEC 9899:2011),它是C语言的第三个官方版本;
  • 2018年,ISO和IEC发布了C18标准(ISO/IEC 9899:2018),它是C语言的第四个官方版本。
    目前,ISO/IEC标准化委员会正在致力于C2x标准的改进与制定,预计它会在2023年发布。

其次,时至今日,C语言的流行度仍然非常高

著名编程语言排行榜TIOBE的数据显示,各大编程语言年度平均排名的总位次,C语言多年来高居第一,如下图(图片来自TIOBE)所示:

这说明,无论是在过去还是现在,C语言都是一门被广泛应用的工业级编程语言。

最后,也是最重要的一点是:C语言是现代IT工业的根基,我们说C永远不会退出IT行业舞台也不为过。

如今,无论是普通消费者端的Windows、macOS、Android、苹果iOS,还是服务器端的Linux、Unix等操作系统,亦或是各个工业嵌入式领域的操作系统,其内核实现语言都是C语言。互联网时代所使用的主流Web服务器,比如 Nginx、Apache,以及主流数据库,比如MySQL、Oracle、PostgreSQL等,也都是使用C语言开发的杰作。可以说,现代人类每天都在跟由C语言实现的系统亲密接触,并且已经离不开这些系统了。回到我们程序员的日常,Git、SVN等我们时刻在用的源码版本控制软件也都是由C语言实现的。

可以说,C语言在IT工业中的根基地位,不光Go语言替代不了,C++、Rust等系统编程语言也无法动摇,而且不仅短期如此,长期来看也是如此。

总之,C语言具有紧凑、高效、移植性好、对内存的精细控制等优秀特性,这使得我们在任何时候学习它都不会过时。不过,我在这里推荐Gopher去了解和系统学习C语言,其实还有另一个原因。我们继续往下看。

二. C与Go的相通之处:Gopher拥抱C语言的“先天优势”

众所周知,Go 是在C语言的基础上衍生而来的,二者之间有很多相通之处,因此 Gopher 在学习C语言时是有“先天优势”的。接下来,我们具体看看C和Go的相通之处有哪些。

1. 简单且语法同源

Go语言以简单著称,而作为Go先祖的C语言,入门门槛同样不高:Go有25个关键字,C有32个关键字(C89标准),简洁程度在伯仲之间。C语言曾长期作为高校计算机编程教育的首选编程语言,这与C的简单也不无关系。

和Go不同的是,C语言是一个小内核、大外延的编程语言,其简单主要体现在小内核上了。这个“小内核”包括C基本语法与其标准库,我们可以快速掌握它。但需要注意的是,与Go语言“开箱即用、内容丰富”的标准库不同,C标准库非常小(在C11标准之前甚至连thread库都不包含),所以掌握“小内核”后,在LeetCode平台上刷题是没有任何问题的,但要写出某一领域的工业级生产程序,我们还有很多外延知识技能要学习,比如并发原语、操作系统的系统调用,以及进程间通信等。

C语言的这种简单很容易获得Gopher们的认同感。当年Go语言之父们在设计Go语言时,也是主要借鉴了C语言的语法。当然,这与他们深厚的C语言背景不无关系:肯·汤普森(Ken Thompson)是Unix之父,与丹尼斯·里奇共同设计了C语言;罗博·派克(Rob Pike)是贝尔实验室的资深研究员,参与了Unix系统的演进、Plan9操作系统的开发,还是UTF-8编码的发明人;罗伯特·格瑞史莫(Robert Griesemer)也是用C语言手写Java虚拟机的大神级人物。

Go的第一版编译器就是由肯·汤普森(Ken Thompson)用C语言实现的。并且,Go语言的早期版本中,C代码的比例还不小。以Go语言发布的第一个版本,Go 1.0版本为例,我们通过loccount工具对其进行分析,会得到下面的结果:

$loccount .
all          SLOC=460992  (100.00%) LLOC=193045  in 2746 files
Go           SLOC=256321  (55.60%)  LLOC=109763  in 1983 files
C            SLOC=148001  (32.10%)  LLOC=73458   in 368 files
HTML         SLOC=25080   (5.44%)   LLOC=0       in 57 files
asm          SLOC=10109   (2.19%)   LLOC=0       in 133 files
... ...

这里我们看到,在1.0版本中,C语言代码行数占据了32.10%的份额,这一份额直至Go 1.5版本实现自举后,才下降为不到1%。

我当初对Go“一见钟情”,其中一个主要原因就是Go与C语言的语法同源。相对应地,相信这种同源的语法也会让Gopher们喜欢上C语言。

2. 静态编译且基础范式相同

除了语法同源,C语言与Go语言的另一个相同点是,它们都是静态编译型语言。这意味着它们都有如下的语法特性:

  • 变量与函数都要先声明后才能使用;
  • 所有分配的内存块都要有对应的类型信息,并且在确定其类型信息后才能操作;
  • 源码需要先编译链接后才能运行。

相似的编程逻辑与构建过程,让学习C语言的Gopher可以做到无缝衔接。

除此之外,Go 和C的基础编程范式都是命令式编程(imperative programming),即面向算法过程,由程序员通过编程告诉计算机应采取的动作。然后,计算机按程序指令执行一系列流程,生成特定的结果,就像菜谱指定了厨师做蛋糕时应遵循的一系列步骤一样。

从Go看 C,没有面向对象,没有函数式编程,没有泛型(Go 1.18已加入),满眼都是类型与函数,可以说是相当亲切了。

3. 错误处理机制如出一辙

对于后端编程语言来说,错误处理机制十分重要。如果两种语言的错误处理机制不同,那么这两种语言的代码整体语法风格很可能大不相同。

在C语言中,我们通常用一个类型为整型的函数返回值作为错误状态标识,函数调用者基于值比较的方式,对这一代表错误状态的返回值进行检视。通常,当这个返回值为0时,代表函数调用成功;当这个返回值为其他值时,代表函数调用出现错误。函数调用者需根据该返回值所代表的错误状态,来决定后续执行哪条错误处理路径上的代码。

C语言这种简单的基于错误值比较的错误处理机制,让每个开发人员必须显式地去关注和处理每个错误。经过显式错误处理的代码会更为健壮,也会让开发人员对这些代码更有信心。另外,这些错误就是普通的值,我们不需要额外的语言机制去处理它们,只需利用已有的语言机制,像处理其他普通类型值那样去处理错误就可以了。这让代码更容易调试,我们也更容易针对每个错误处理的决策分支进行测试覆盖。

C语言错误处理机制的这种简单与显式,跟Go语言的设计哲学十分契合,于是Go语言设计者决定继承这种错误处理机制。因此,当Gopher们来到C语言的世界时,无需对自己的错误处理思维做出很大的改变,就可以很容易地适应C语言的风格。

三. 知己知彼,来看看C与Go的差异

虽说 Gopher 学习C语言有“先天优势”,但是不经过脚踏实地的学习与实践就想掌握和精通C语言,也是不可能的。而且,C 和Go还是有很大差异的,Gopher 们只有清楚这些差异,做到“知己知彼”,才能在学习过程中分清轻重,有的放矢。俗话说,“磨刀不误砍柴功”,下面我们就一起看看C与Go有哪些不同。

1. 设计哲学

在人类自然语言学界,有一个很著名的假说——“萨丕尔-沃夫假说”。这个假说的内容是这样的:语言影响或决定人类的思维方式。对我来说,编程语言也不仅仅是一门工具,它还影响着程序员的思维方式。每次开始学习一门新的编程语言时,我都会先了解这门编程语言的设计哲学。

每种编程语言都有自己的设计哲学,即便这门语言的设计者没有将其显式地总结出来,它也真真切切地存在,并影响着这门语言的后续演进,以及这门语言程序员的思维方式。我在《Tony Bai · Go语言第一课》专栏里,将Go语言的设计哲学总结成了5点,分别是简单、显式、组合、并发和面向工程

那么C语言的设计哲学又是什么呢?从表面上看,简单紧凑、性能至上、极致资源、全面移植,这些都可以作为C的设计哲学,但我倾向于一种更有人文气息的说法:满足和相信程序员

在这样的设计哲学下,一方面,C语言提供了几乎所有可以帮助程序员表达自己意图的语法手段,比如宏、指针与指针运算、位操作、pragma指示符、goto语句,以及跳转能力更为强大的longjmp等;另一方面,C语言对程序员的行为并没有做特别严格的限定与约束,C程序员可以利用语言提供的这些语法手段,进行天马行空的发挥:访问硬件、利用指针访问内存中的任一字节、操控任意字节中的每个位(bit)等。总之,C语言假定程序员知道他们在做什么,并选择相信程序员。

C语言给了程序员足够的自由,可以说,在C语言世界,你几乎可以“为所欲为”。但这种哲学也是有代价的,那就是你可能会犯一些莫名其妙的错误,比如悬挂指针,而这些错误很少或不可能在其他语言中出现。

这里再用一个比喻来更为形象地表达下:从Go世界到C世界,就好比在动物园中饲养已久的动物被放归到野生自然保护区,有了更多自由,但周围也暗藏着很多未曾遇到过的危险。因此,学习C语言的Gopher们要有足够的心理准备。

2. 内存管理

接下来我们来看C与Go在内存管理方面的不同。我把这一点放在第二位,是因为这两种语言在内存管理上有很大的差异,而且这一差异会给程序员的日常编码带来巨大影响。

我们知道,Go是带有垃圾回收机制(俗称GC)的静态编程语言。使用Go编程时,内存申请与释放,在栈上还是在堆上分配,以及新内存块的清零等等,这一切都是自动的,且对程序员透明。

但在C语言中,上面说的这些都是程序员的责任。手工内存管理在带来灵活性的同时,也带来了极大的风险,其中最常见的就是内存泄露(memory leak)与悬挂指针(dangling pointer)问题。

内存泄露主要指的是程序员手工在堆上分配的内存在使用后没有被释放(free),进而导致的堆内存持续增加。而悬挂指针的意思是指针指向了非法的内存地址,未初始化的指针、指针所指对象已经被释放等,都是导致悬挂指针的主要原因。针对悬挂指针进行解引用(dereference)操作将会导致运行时错误,从而导致程序异常退出的严重后果。

Go语言带有GC,而C语言不带GC,这都是由各自语言设计哲学所决定的。GC是不符合C语言的设计哲学的,因为一旦有了GC,程序员就远离了机器,程序员直面机器的需求就无法得到满足了。并且,一旦有了GC,无论是在性能上还是在资源占用上,都不可能做到极致了。

在C中,手工管理内存到底是一种什么感觉呢?作为一名有着十多年C开发经验的资深C程序员,我只能告诉你:与内存斗,其乐无穷!这是在带GC的编程语言中无法体会到的。

3. 语法形式

虽然C语言是Go的先祖,并且Go也继承了很多C语言的语法元素,但在变量/函数声明、行尾分号、代码块是否用括号括起、标识符作用域,以及控制语句语义等方面,二者仍有较大差异。因此,对Go已经很熟悉的程序员在初学C时,受之前编码习惯的影响,往往会踩一些“坑”。基于此,我总结了Gopher学习C语言时需要特别注意的几点,接下来我们具体看看。

第一,注意声明变量时类型与变量名的顺序

前面说过,Go与C都是静态编译型语言,这就要求我们在使用任何变量之前,需要先声明这个变量。但Go采用的变量声明语法颇似Pascal语言,即变量名在前,变量类型在后,这与C语言恰好相反,如下所示:

Go:

var a, b int
var p, q *int

vs.

C:
int a, b;
int *p, *q;

此外,Go支持短变量声明,并且由于短变量声明更短小,无需显式提供变量类型,Go编译器会根据赋值操作符后面的初始化表达式的结果,自动为变量赋予适当类型。因此,它成为了Gopher们喜爱和重度使用的语法。但短声明在C中却不是合法的语法元素:

int main() {
    a := 5; //  error: expected expression
    printf("a = %d\n", a);
}

不过,和上面的变量类型与变量名声明的顺序问题一样,C编译器会发现并告知我们这个问题,并不会给程序带来实质性的伤害。

第二,注意函数声明无需关键字前缀

无论是C语言还是Go语言,函数都是基本功能逻辑单元,我们也可以说C程序就是一组函数的集合。实际上,我们日常的C代码编写大多集中在实现某个函数上。

和变量一样,函数在两种语言中都需要先声明才能使用。Go语言使用func关键字作为函数声明的前缀,并且函数返回值列表放在函数声明的最后。但在C语言中,函数声明无需任何关键字作为前缀,函数只支持单一返回值,并且返回值类型放在函数名的前面,如下所示:

Go:
func Add(a, b int) int {
    return a+b
}

vs.

C:
int Add(int a, int b) {
    return a+b;
}

第三,记得加上代码行结尾的分号

我们日常编写Go代码时,极少手写分号。这是因为,Go设计者当初为了简化代码编写,提高代码可读性,选择了由编译器在词法分析阶段自动在适当位置插入分号的技术路线。如果你是一个被Go编译器惯坏了的Gopher,来到C语言的世界后,一定不要忘记代码行尾的分号。比如上面例子中的C语言Add函数实现,在return语句后面记得要手动加上分号。

第四,补上“省略”的括号

同样是出于简化代码、增加可读性的考虑,Go设计者最初就取消掉了条件分支语句(if)、选择分支语句(switch)和循环控制语句(for)中条件表达式外围的小括号:

// Go代码
func f() int {
    return 5
}
func main() {
    a := 1
    if a == 1 { // 无需小括号包裹条件表达式
        fmt.Println(a)
    }

    switch b := f(); b { // 无需小括号包裹条件表达式
    case 4:
        fmt.Println("b = 4")
    case 5:
        fmt.Println("b = 5")
    default:
        fmt.Println("b = n/a")
    }

    for i := 1; i < 10; i++ { // 无需小括号包裹循环语句的循环表达式
        a += i
    }
    fmt.Println(a)
}

这一点恰恰与C语言“背道而驰”。因此,我们在使用C语言编写代码时,务必要想着补上这些括号:

// C代码
int f() {
        return 5;
}

int main() {
    int a = 1;
    if (a == 1) { // 需用小括号包裹条件表达式
        printf("%d\n", a);
    }

    int b = f();
    switch (b) { // 需用小括号包裹条件表达式
    case 4:
        printf("b = 4\n");
        break;
    case 5:
        printf("b = 5\n");
        break;
    default:
        printf("b = n/a\n");
    }

    int i = 0;
    for (i = 1; i < 10; i++) { // 需用小括号包裹循环语句的循环表达式
        a += i;
    }
    printf("%d\n", a);
}

第五,留意C与Go导出符号的不同机制

C语言通过头文件来声明对外可见的符号,所以我们不用管符号是不是首字母大写的。但在Go中,只有首字母大写的包级变量、常量、类型、函数、方法才是可导出的,即对外部包可见。反之,首字母小写的则为包私有的,仅在包内使用。Gopher一旦习惯了这样的规则,在切换到C语言时,就会产生“心理后遗症”:遇到在其他头文件中定义的首字母小写的函数时,总以为不能直接使用。

第六,记得在switch case语句中添加break

C 语言与Go语言在选择分支语句的语义方面有所不同:C语言的 case 语句中,如果没有显式加入break语句,那么代码将向下自动掉落执行。而Go在最初设计时就重新规定了switch case的语义,默认不自动掉落(fallthrough),除非开发者显式使用fallthrough关键字。

适应了Go的switch case语句的语义后再回来写C代码,就会存在潜在的“风险”。我们来看一个例子:

// C代码:
int main() {
    int a = 1;
    switch(a) {
        case 1:printf("a = 1\n");
        case 2:printf("a = 2\n");
        case 3:printf("a = 3\n");
        default:printf("a = ?\n");
    }
}

这段代码是按Go语义编写的switch case,编译运行后得到的结果如下:

a = 1
a = 2
a = 3
a = ?

这显然不符合我们输出“a = 1”的预期。对于初学C的Gopher而言,这个问题影响还是蛮大的,因为这样编写的代码在C编译器眼中是完全合法的,但所代表的语义却完全不是开发人员想要的。这样的程序一旦流入到生产环境,其缺陷可能会引发生产故障。

一些Clint 工具可以检测出这样的问题,因此对于写C代码的Gopher,我建议在提交代码前使用lint工具对代码做一下检查。

4. 构建机制

Go与C都是静态编译型语言,它们的源码需要经过编译器和链接器处理,这个过程称为构建(build),构建后得到的可执行文件才是最终交付给用户的成果物。

和Go语言略有不同的是,C语言的构建还有一个预处理(pre-processing)阶段,预处理环节的输出才是C编译器的真正输入。C语言中的宏就是在预处理阶段展开的。不过,Go没有预处理阶段。

C语言的编译单元是一个C源文件(.c),每个编译单元在编译过程中会对应生成一个目标文件(.o/.obj),最后链接器将这些目标文件链接在一起,形成可执行文件。

而Go则是以一个包(package)为编译单元的,每个包内的源文件生成一个.o文件,一个包的所有.o文件聚合(archive)成一个.a文件,链接器将这些目标文件链接在一起形成可执行文件。

Go语言提供了统一的Go命令行工具链,且Go编译器原生支持增量构建,源码构建过程不需要Gopher手工做什么配置。但在C语言的世界中,用于构建C程序的工具有很多,主流的包括gcc/clang,以及微软平台的C编译器。这些编译器原生不支持增量构建,为了提升工程级构建的效率,避免每次都进行全量构建,我们通常会使用第三方的构建管理工具,比如make(Makefile)或CMake。考虑移植性时,我们还会使用到configure文件,用于在目标机器上收集和设置编译器所需的环境信息。

5. 依赖管理

我在前面提过,C语言仅提供了一个“小内核”。像依赖管理这类的事情,C语言本身并没有提供跟Go中的Go Module类似的,统一且相对完善的解决方案。在C语言的世界中,我们依然要靠外部工具(比如CMake)来管理第三方的依赖。

C语言的第三方依赖通常以静态库(.a)或动态共享库(.so)的形式存在。如果你的应用要使用静态链接,那就必须在系统中为C编译器提供第三方依赖的静态库文件。但在实际工作中,完全采用静态链接有时是会遇到麻烦的。这是因为,很多操作系统在默认安装时是不带开发包的,也就是说,像 libc、libpthread 这样的系统库只提供了动态共享库版本(如/lib下提供了libc的共享库libc.so.6),其静态库版本是需要自行下载、编译和安装的(如libc的静态库libc.a在安装后是放在/usr/lib下面的)。所以多数情况下,我们是将****静态、动态****两种链接方式混合在一起使用的,比如像libc这样的系统库多采用动态链接。

动态共享库通常是有版本的,并且按照一定规则安装到系统中。举个例子,一个名为libfoo的动态共享库,在安装的目录下文件集合通常是这样:

2022-03-10 12:28 libfoo.so -> libfoo.so.0.0.0*
2022-03-10 12:28 libfoo.so.0 -> libfoo.so.0.0.0*
2022-03-10 12:28 libfoo.so.0.0.0*

按惯例,每个动态共享库都有多个名字属性,包括real name、soname和linker name。下面我们来分别看下。

  • real name:实际包含共享库代码的那个文件的名字(如上面例子中的libfoo.so.0.0.0)。动态共享库的真实版本信息就在real name中,显然real name中的版本号符合语义版本规范,即major.minor.patch。当两个版本的major号一致,说明是向后兼容的两个版本;
  • soname:shared object name的缩写,也是这三个名字中最重要的一个。无论是在编译阶段还是在运行阶段,系统链接器都是通过动态共享库的soname(如上面例子中的libfoo.so.0)来唯一识别共享库的。我们看到的soname实际上是仅包含major号的共享库名字;
  • linker name:编译阶段提供给编译器的名字(如上面例子中的libfoo.so)。如果你构建的共享库的real name跟上面例子中libfoo.so.0.0.0类似,带有版本号,那么你在编译器命令中直接使用-L path -lfoo是无法让链接器找到对应的共享库文件的,除非你为libfoo.so.0.0.0提供了一个linker name(如libfoo.so,一个指向libfoo.so.0.0.0的符号链接)。linker name一般在共享库安装时手工创建。
    动态共享库有了这三个名称属性,依赖管理就有了依据。但由于在链接的时候使用的是linker name,而linker name并不带有版本号,真实版本与主机环境有关,因此要实现C应用的可重现构建还是比较难。在实践中,我们通常会使用专门的构建主机,项目组将该主机上的依赖管理起来,进而保证每次构建所使用的依赖版本是可控的。同时,应用部署的目标主机上的依赖版本也应该得到管理,避免运行时出现动态共享库版本不匹配的问题。

6. 代码风格

Go语言是历史上首次实现了代码风格全社区统一的编程语言。它基本上消除了开发人员在代码风格上的无休止的、始终无法达成一致的争论,以及不同代码风格带来的阅读、维护他人代码时的低效。gofmt工具格式化出来的代码风格已经成为Go开发者的一种共识,融入到Go语言的开发文化当中了。所以,如果你让某个Go开发者说说gofmt后的代码风格是什么样的,多数Go开发者可能说不出,因为代码会被gofmt自动变成那种风格,大家已经不再关心风格了。

而在C语言的世界,代码风格仍存争议。但经过多年的演进,以及像Go这样新兴语言的不断“教育”,C社区也在尝试进行这方面的改进,涌现出了像clang-format这样的工具。目前,虽然还没有在全社区达成一致的代码风格(由于历史原因,这很难做到),但已经可以减少很多不必要的争论。

对于正在学习C语言,并进行C编码实践的Gopher,我的建议是:不要拘泥于使用什么代码风格,先用clang-format,并确定一套风格模板就好

四. 小结

作为一名对Go跟随和研究了近十年的程序员,我深刻体会到,Go的简单性、性能和生产力使它成为了创建面向用户的应用程序和服务的理想语言。快速的迭代让团队能够快速地作出反应,以满足用户不断变化的需求,让团队可以将更多精力集中在保持灵活性上。

但Go也有缺点,比如缺少对内存以及一些低级操作的精确控制,而C语言恰好可以弥补这个缺陷。C 语言提供的更精细的控制允许更多的精确性,使得C成为低级操作的理想语言。这些低级操作不太可能发生变化,并且C相比Go还提高了性能。所以,如果你是一个有性能与低级操作需求的 Gopher ,就有充分的理由来学习C语言。

C 的优势体现在最接近底层机器的地方,而Go的优势在离用户较近的地方能得到最大发挥。当然,这并不是说两者都不能在对方的空间里工作,但这样做会增加“摩擦”。当你的需求从追求灵活性转变为注重效率时,用C重写库或服务的理由就更充分了。

总之,虽然Go和C的设计有很大的不同,但它们也有很多相似性,具备发挥兼容优势的基础。并且,当我们同时使用这二者时,就可以既有很大的灵活性,又有很好的性能,可以说是相得益彰!

五. 写在最后

今天的加餐中,我主要是基于C与Go的比较来讲解的,对于Go语言的特性并没有作详细展开。如果你还想进一步了解Go语言的设计哲学、语法特性、程序设计相关知识,欢迎来学习我在极客时间上的专栏《Tony Bai ·Go语言第一课》。在这门课里,我会用我十年Gopher的经验,带给你一条系统、完整的Go语言入门路径。

感谢你看到这里,如果今天的内容让你有所收获,欢迎把它分享给你的朋友。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

使用ANTLR和Go实现DSL入门

本文永久链接 – https://tonybai.com/2022/05/10/introduction-of-implement-dsl-using-antlr-and-go

一. 引子

设计与实现一门像Go这样的通用编程语言的确很难!那是世界上少数程序员从事的事业,但是实现一门领域特定语言(Domain Specific Language, DSL)似乎是可行的。

就像著名的语言解析器生成工具ANTLR作者Terence Parr在《编程语言实现模式》一书中说的那样:

Yes, building a compiler for a general-purpose programming language requires a strong computer science background. But, most of us don’t build compilers. So, this book focuses on the things that we build all the time: configuration file readers, data readers, model-driven code generators, source-to-source translators, source analyzers, and interpreters. (翻译为中文:是的,为通用编程语言构建一个编译器需要强大的计算机科学背景。但是,我们中的大多数人并不构建编译器。所以,这本书的重点是我们一直在构建的东西:配置文件阅读器、数据阅读器、模型驱动的代码生成器、源码到源码的翻译器、源码分析器和解释器。)

最近因业务需要,我们要在车端实现一个车辆数据处理的规则引擎SDK。这个SDK供车端数据服务使用,用于车辆数据上报前的预处理(如下图)。

这么做,一来是因为隐私数据因隐私法规要求不可上传云端,另外特定业务场景下云端处理海量汽车的窗口数据开销太大,相反在车端处理便容易很多。随着车端算力的不断增强,这种车云结合也是车联网发展的趋势。车端有了数据处理的规则引擎后,通过云端下发规则的方式,车端便可以实现对数据处理逻辑的精准管控与快速安全的热更新(无需OTA)。

针对引擎的规则的描述至少有两种技术方案,一种是使用以标准数据交换格式(比如:Json、yaml、xml等)承载的配置文件,一种则是自定义的领域特定语言(DSL)。我们选择了后者,为的是表达简单精炼、更贴近领域、表达范围安全可控以及抽象层次更高等。

按照Martin Fowler的《领域特定语言》一书的介绍,DSL大体分为外部DSL与内部DSL。其中内部DSL是直接采用现有通用编程语言,比如python、lua、go的语法特性实现的DSL;而外部DSL则需要自己创建一门新语言,并实现语言的编译器或解析器,比如:SQL、ant、make等。

对于在车端的执行的规则而言,使用通用编程语言语法描述的规则具有一定的不安全性,不符合我们的要求。我们只有外部DSL这一条路可走。这就需要我们自行设计DSL语法、DSL语言的解析器以及执行相应语义的执行器,如下图所示:

看到上面示意图中的词法分析、语法分析,你肯定会想起大学时学过的难忘的一门课:编译原理。还记得当时你是如何通过这门课的考核的吗^_^。编译原理是计算机专业学生挂科率较高的一门专业课,它不仅抽象,听起来还十分枯燥。笔者并非计算机专业科班出身,但读本科时一直在旁听计算机系姜守旭老师的形式语言以及编译原理课,虽然当时有些云里雾里,但课程内核我还是有所把握。

好了!现在编译原理课的概念与方法又要派上用场了!我们需要利用编译原理课上学到的知识来手工实现上图中的词法分析器、语法分析器…。

等等!我们非要手工实现么?难道就没有工具能帮助我们吗?编译技术经过这么多年的发展,像词法分析、语法分析这两个阶段已经可以由工具自动帮你完成了。也就是说我们可以通过工具自动生成可以对DSL脚本进行词法分析(lexer)与语法分析(parser)的代码

对于编译器领域的新手,就像我,或者已经将编译原理知识还给老师的童鞋,我个人还是建议先使用辅助工具自动生成lexer和parser。在这一过程中,可以重温编译知识并深刻体会上下文无关文法(context-free grammar)的解析过程。当对这一问题域有深刻认知后,如果觉得自动生成的代码不够漂亮、不够灵活或性能不佳,再考虑手写lexer和parser也不迟。

如果我没记错,Go最初的lexer和parser就是自动生成的,后来才换成Go语言之父之一的Robert Griesemer手写维护的Parser。

那么我们选择哪个语法解析器的生成工具呢?我们继续往下看。

二. 选择ANTLR

市面上可用于自动生成lexer和parser代码的工具有很多种。知名度高,应用较为广泛的包括:Lex和Yacc(GNU对应的版本的叫Flex和Bison)和ANTLR等。这里面lex和yacc(gnu版本:flex和bison)是固定组合。

lex和yacc在20世纪70年代中旬诞生于著名的贝尔实验室,lex的原作者是Mike Lesk和Eric Schmidt(没错,就是Google前CEO),而yacc的原作者为Stephen C. Johnson。同样在贝尔实验室供职的C++之父Bjarne Stroustrup就是用yacc实现了第一个C++编译器cfront的前端的(C代码)。

lex是词法分析器,负责将源码(字符流)解析为一个个词法元素(token);而yacc则将这些token作为输入,构建出一个程序结构,通常是一个抽象语法树(如下图)。

图片来自lex和yacc教程

不过由于lex和yacc诞生较早,支持生成的目标语言较少。经典的贝尔实验室的yacc最初只支持生成C语言的解析器代码。Gnu版本的Bison支持输出C、C++和Java。但和很多后起之秀相比,比如ANTLR,yacc(和bison)在目标语言可选择的广泛性、调试工具多样性以及整个社区的运作方面就显得相形见绌了。

ANTLR是由Terence Parr教授(目前跳槽去Google了)在上世纪90年代初期使用Java语言开发的一个强大的语法分析器生成工具,至今ANTLR依然在积极开发,并且有着一个稳定的社区。ANTLR支持生成C#, Java, Python, JavaScript, C++, Swift, Go, PHP等几乎所有主流编程语言的目标代码,并且ANTLR官方自己维护了Java、C++、Go等目标语言的runtime库(见下图):

ANTLR可以生成各种主流通用编程语言的parser,并且在grammars-v4仓库中提供了这些语言的antlr4语法rule文件(antlr规则文件以g4为文件名后缀),这些rule样例文件可作为我们自己设计文法时的重要参考

这里我们选择使用ANTLR来生成DSL的Parser

三. 如何基于ANTLR定义DSL语法

外部DSL与通用编程语言相比,体量虽小,但也是一门语言,我们在自动生成或手工编写其解析器之前需要定义出该DSL的语法。更准确地说是DSL的形式化语法

那么,如何定义/形式化一门语言呢?和自然语言一样,编程语言也都是有结构的。定义语言就是要把这些结构,包括成分与排列顺序规则,精确地描述出来。我们小学学习语文的时候,大家都学会句型分析,什么主谓宾定状补等。一个汉语完整句子的完整结构如下:

// ()内的语法成分是可选的

(定语)主语 + (状语)谓语(补语) + (定语)宾语(补语)

要使用汉语表达正确的意思,就要满足这样的结构。要定义DSL语言,我们也要精确定义出DSL的结构。

那么我们用什么方式来描述这种DSL的语法结构呢?在学习形式语言或编译原理课程时,想必大家肯定接触过BNF(Backus-Naur Form),即巴科斯范式。巴科斯范式是以美国人巴科斯(Backus)和丹麦人诺尔(Naur)的名字命名的一种形式化的语法表示方法,是用来描述语法的一种形式体系,是一种典型的元语言。自从编程语言Algol 60(Naur,1960)使用BNF符号定义语法以来,这种符号规则体系被证明适合作为形式化编程语言的语法,之后人们也开始习惯于使用此类元语言去定义语言语法。

BNF元语言的典型表达形式如下:

<symbol> ::= expression
<symbol> ::= expression1 | expression2
  • 这个式子左侧放在尖括号中的symbol是一个非终结符号,而expression这个表达式由一个或多个终结符号或非终结符号的序列组成,这个式子也被称为产生式(production)。
  • 产生式中的“::=”这个符号含义是“被定义为”,左边的非终结符号可以被推导为右边的表达式,右边的表达式也可以归约为左边的非终结符号。
  • 如果右侧有多种表达式形式可作为symbol的归约选择,可以使用”|”符号分隔。
  • 从未出现在左边的符号是终结符号。另一方面,出现在左侧的符号为非终结符号,并且总是被包围在一对<>之间。

随着BNF的广泛应用,一些以简化BNF或特定应用为目的的扩展BNF元语言被创建出来,其中典型的包括EBNF、ABNF等。

最早的EBNF是由Niklaus Wirth开发的, 它包含了Wirth语法符号中的一些概念和不同的语法和符号. 1996年,国际标准化组织通过了EBNF标准ISO/IEC 14977:1996

EBNF使用了与BNF不同的符号且对BNF进行了增强,EBNF甚至可以定义自己的语法(如下):

letter = "A" | "B" | "C" | "D" | "E" | "F" | "G"
       | "H" | "I" | "J" | "K" | "L" | "M" | "N"
       | "O" | "P" | "Q" | "R" | "S" | "T" | "U"
       | "V" | "W" | "X" | "Y" | "Z" | "a" | "b"
       | "c" | "d" | "e" | "f" | "g" | "h" | "i"
       | "j" | "k" | "l" | "m" | "n" | "o" | "p"
       | "q" | "r" | "s" | "t" | "u" | "v" | "w"
       | "x" | "y" | "z" ;
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
symbol = "[" | "]" | "{" | "}" | "(" | ")" | "<" | ">"
       | "'" | '"' | "=" | "|" | "." | "," | ";" ;
character = letter | digit | symbol | "_" ;

identifier = letter , { letter | digit | "_" } ;
terminal = "'" , character , { character } , "'"
         | '"' , character , { character } , '"' ;

lhs = identifier ;
rhs = identifier
     | terminal
     | "[" , rhs , "]"
     | "{" , rhs , "}"
     | "(" , rhs , ")"
     | rhs , "|" , rhs
     | rhs , "," , rhs ;

rule = lhs , "=" , rhs , ";" ;
grammar = { rule } ;

我们看到EBNF使用”=”替代BNF中的”::=”,并且终结符号必须放在双引号内,避免了BNF自身使用的符号(<, >, |, ::=)无法在语言中使用。此外,BNF语法只能在一行中定义一条产生式规则,而EBNF使用一个终止字符,即分号字符”;”来标识着一条产生规则的结束,这样EBNF的一条产生式规则可以跨越多行。 此外,EBNF还提供了许多增强的机制,比如:定义重复的数量、支持注释等。

我们看到无论是BNF还是EBNF,它们都有一个共同特点,那就是产生式规则左侧仅有一个非终结符号,这样定义出的语法(文法)称为上下文无关(Context-Free Grammar,CFG)文法。以下面产生式规则为例:

S = aSb

我们看到S始终都可以被推导为aSb,而无需考虑S在什么位置,上下文是什么。如果你还云里雾里,我们可以对比上下文相关文法(Context-Sensitive Grammar,CSG)来理解。下面就是一个上下文相关文法的产生式规则:

aSb = abScd

在这个产生式的左侧,S不再是“孤单”的,而是左右各有一个“保镖”:a和b。a和b就是S的上下文,也就说S只有在“左有a且右有b”的上下文环境下才能被推导为abScd

可以看出上下文相关文法更具通用性,因为一些语言(比如自然语言)可以用上下文相关文法定义,但却无法用上下文无关文法定义。但计算机编程语言更多使用上下文无关文法就可以定义。因此,后续我们定义的文法都是上下文无关文法。

ANTLR使用的是一种类EBNF的语法,通过ANTLR语法定义的DSL的语法规则放置在后缀为”.g4″的规则文件中,下面是一个ANTLR语法描述的简单计算器的DSL语法(该例子来自这里):

// Calc.g4
grammar Calc;

// Rules
start : expression EOF;

expression
   : expression op=('*'|'/') expression # MulDiv
   | expression op=('+'|'-') expression # AddSub
   | NUMBER                             # Number
   ;

// Tokens
MUL: '*';
DIV: '/';
ADD: '+';
SUB: '-';
NUMBER: [0-9]+;
WHITESPACE: [ \r\n\t]+ -> skip;
  • 一个antlr描述的语法规则由grammar关键字开始,后接这份语法的名字,这个名字要与文件名保持一致。比如上面例子中的语法名字为Calc,那么承载这份语法定义的文件名就应该为Calc.g4,否则通过antlr工具生成目标代码时会报错!
  • antlr支持在语法定义文件中使用注释,支持单行注释//和多行注释/* … */。
  • antlr语法定义文件本质上就是一个产生式规则的集合,其主体结构如下:
grammar MyG;
rule1 : «stuff» ;

rule2 : «more stuff» ;
...
  • antlr本身就是一种类EBNF元语言,它使用冒号(:)作为产生式左侧非终结符号与右侧推导表达式的分隔符,使用与EBNF相同的分号(;)作为一条产生式规则的结束符,这样antlr可以支持一个产生式规则跨多行定义,就像上面例子中的非终结符号expression
  • antlr又将非终结符号做了细分,一种是首字母小写的单词代表的语法解析器规则(parser rule),另外一种是首字母大写的单词(通常整个单词都大写)代表的词法分析器规则(lexical/token rule)。前者用于定义语法结构,就像上例中的expression,后者则定义词汇符号,比如上例中的NUMBER。
  • 上面例子中start作为整个Calc语法的起始规则;语法从start开始,自上而下展开。因此一个antlr dsl规则文件都应该有一个起始规则,名字可任意起;
  • 如果产生式右侧有多个可选表达式,可以用竖线(|)分开;
  • expression产生式每个可选表达式后面的井号及后面的单词用于指示这条推导表达式在目标代码中的方法名,主要是服务于生成的目标代码。

比如:上述例子中的expression产生式“等价于”下面语法:

expression
   : muldiv
   | addsub
   | NUMBER
   ;

muldiv
   : expression op=('*'|'/') expression
   ; 

addsub:
   | expression op=('+'|'-') expression
   ;

但是这个所谓的“等价”语法定义是有问题的,当我们用antlr基于该语法文件试图生成目标代码时会提示:

error(119): Calc.g4::: The following sets of rules are mutually left-recursive [expression, muldiv, addsub]

antlr命令行工具提示Calc.g4中存在互斥的左递归问题。Antlr可以自动处理直接左递归,即在一个产生式规则中存在的左递归(对应到代码层面,就是在代表自己的函数Expr中递归调用Expr),比如:

expr: expr op=('*'|'/') expr ;

如果是跨产生式规则的左递归,又称间接左递归(对应到代码层面就是在Expr函数中调用另外一个函数AddSub,而AddSub函数又调用了Expr函数),比如下面规则:

expr: addsub;
addsub: expr op=('+'|'-') expr;

Antlr无法自动解决这种间接左递归,需要你优化DSL语法,消除间接左递归

如果你不习惯antlr定义dsl的语法,你可以通过https://bottlecaps.de/convert/这个在线工具将antlr4语法转换为EBNF语法(如下,可能不是标准EBNF):

start    ::= expression EOF
expression
         ::= expression ( '*' | '/' | '+' | '-' ) expression
           | NUMBER
_        ::= WHITESPACE
          /* ws: definition */

<?TOKENS?>

NUMBER   ::= [0-9]+
WHITESPACE
         ::= [ \r\n\t]+
EOF      ::= $

该工具还支持在线生成语法对应的状态转换图,如下图:

好了,到这里我们铺垫了很多很多了,下面我们来基于antlr进行一次实战!

四. ANTLR安装、代码生成与语法调试

1. 安装和配置ANTLR

ANTLR是一个Java开发的命令行工具包(截至发此文时,最新版本为4.10.1),其安装步骤很简单。在官方醒目的位置有安装步骤,这里摘抄下来^_^:

// 适用于MacOS(已安装JDK)

$ cd /usr/local/lib
$ sudo curl -O https://www.antlr.org/download/antlr-4.10.1-complete.jar

// 通过下面命令将antlr jar包加入classpath并定义antlr4别名
// 或编辑shell的环境文件,比如.zshrc/.bashrc等,将下面内容添加到环境文件中并source生效
// grun别名将启动antlr提供的DSL语法调试工具,非常实用

$ export CLASSPATH=".:/usr/local/lib/antlr-4.10.1-complete.jar:$CLASSPATH"
$ alias antlr4='java -jar /usr/local/lib/antlr-4.10.1-complete.jar'
$ alias grun='java org.antlr.v4.gui.TestRig'

安装后,执行下面命令,如果输出内容与下面相同,则说明安装成功。

$antlr4
ANTLR Parser Generator  Version 4.10.1
... ...

接下来我们就来生成一个示例DSL的目标Parser代码。

2. 生成一个CSV格式解析器的框架代码

本文是一篇入门文章,所以我挑选了一个大家都十分熟悉的数据格式CSV(逗号分隔的数据文件格式),我们为这种数据格式生成一种可以实现解析和转换的DSL的parser。《ANTLR4权威指南》一书的8.1小节有一个CSV的例子,我们就“拿来主义”,为这个CSV语法生成对应的Parser代码框架。

书中给出的CSV语法规则文件如下:

// github.com/bigwhite/experiments/tree/master/antlr/csv2map/CSV.g4
grammar CSV;

csvFile: hdr row+ ;
hdr : row ;

row : field (',' field)* '\r'? '\n' ;

field
    : TEXT
    | STRING
    |
    ;

TEXT   : ~[,\n\r"]+ ;
STRING : '"' ('""'|~'"')* '"' ; // quote-quote is an escaped quote

书中这个例子给出CSV格式是带有header行的,即认为CSV文件的第一行是header。之后的行才是数据。而数据既可以是直接文本也是带有双引号的字符串。

我们基于这个规则文件生成对应的Go代码:

$antlr4 -Dlanguage=Go -o parser CSV.g4

通过-Dlanguage选项告诉antlr要生成的目标代码语言,通过-o指定生成代码存放的目录,这里我们告诉antlr将生成的Go代码放在parser目录下,由于生成的Go包名默认为parser,因此指定parser目录与Go的包导入路径机制是契合的。但是目前antlr不会根据传给-o的目录名去修改生成代码的包名。比如:-o parser1,生成代码在parser1目录下,但代码的包名依旧为parser,这点要注意。

$tree ./parser
.
├── CSV.g4
└── parser
    ├── CSV.interp
    ├── CSV.tokens
    ├── CSVLexer.interp
    ├── CSVLexer.tokens
    ├── csv_base_listener.go
    ├── csv_lexer.go
    ├── csv_listener.go
    └── csv_parser.go

3. 代码探索

下面我们对照CSV.g4中的语法规则,简单探索一下antlr生成的Go代码。

如上面parser目录下的布局,antlr4默认情况下共生成了四个Go源文件:

  • csv_lexer.go:提供词法分析器实现
  • csv_parser.go:提供语法分析器的实现
  • csv_listener.go:定义了CSVListener接口
  • csv_base_listener.go:提供了一个CSVListener接口的默认实现BaseCSVListener,其方法实现默认都为空,即什么也不做。

这里重点看一下CSVListener接口:

// CSVListener is a complete listener for a parse tree produced by CSVParser.
type CSVListener interface {
    antlr.ParseTreeListener

    // EnterCsvFile is called when entering the csvFile production.
    EnterCsvFile(c *CsvFileContext)

    // EnterHdr is called when entering the hdr production.
    EnterHdr(c *HdrContext)

    // EnterRow is called when entering the row production.
    EnterRow(c *RowContext)

    // EnterField is called when entering the field production.
    EnterField(c *FieldContext)

    // ExitCsvFile is called when exiting the csvFile production.
    ExitCsvFile(c *CsvFileContext)

    // ExitHdr is called when exiting the hdr production.
    ExitHdr(c *HdrContext)

    // ExitRow is called when exiting the row production.
    ExitRow(c *RowContext)

    // ExitField is called when exiting the field production.
    ExitField(c *FieldContext)
}

这是antlr根据CSV.g4中的文法生成的Listener,你一定要对照着CSV.g4中的文法来看这个接口的方法集合。我们看到,对于每个CSV.g4中的解析器规则(parser rule),比如:csvFile、hdr、row、field,CSVListener中都有一对与之对应的方法。以hdr为例,EnterHdr对应进入hdr产生式规则时调用的方法,ExitHdr则对应离开hdr产生式规则时调用的方法。后续我们自定义遍历抽象语法树的CSVListener实现,就是要根据需要实现对应的方法即可。这个对照我们稍后的例子中代码,你会有更深刻的体会。

此外,antlr生成的代码不多,但我们看到生成的CSVParser和CSVLexer两个结构中分别内嵌了antlr.BaseParser和antlr.BaseLexer,也就是说核心的实现都在antlr提供的go runtime中。

此外这里还要说一下parser解析完文法后生成的语法树的访问方式。antlr提供两种语法树的遍历方式,一种是listener,一种是visitor,但antlr默认只是生成了listener的代码。如果要生成visitor代码,可以在命令行使用-visitor选项:

$antlr4 -Dlanguage=Go -visitor -o parser CSV.g4

生成的源文件中就会多出csv_visitor.go和csv_base_visitor.go,前者定义了CSVVisitor接口,后者提供了CSVVisitor的基本实现:BaseCSVVisitor:

$tree parser
parser
├── CSV.interp
├── CSV.tokens
├── CSVLexer.interp
├── CSVLexer.tokens
├── csv_base_listener.go
├── csv_base_visitor.go
├── csv_lexer.go
├── csv_listener.go
├── csv_parser.go
└── csv_visitor.go

当然antlr4命令行提供了各种精细的控制开关来控制是否生成listener或visitor:

 -listener           generate parse tree listener (default)
 -no-listener        don't generate parse tree listener
 -visitor            generate parse tree visitor
 -no-visitor         don't generate parse tree visitor (default)

在后面我们将使用listener方式遍历抽象语法树提取我们需要的信息。在深入代码之前,我们再来看看antlr提供的调试工具。

4. 文法调试工具

我们基于antlr4提供的规则手工编写DSL的语法规则,难免会出现各种各样的问题,比如:有二义性、规则顺序导致的错误推导等。antlr提供了十分强大且方便的调试工具grun:

$grun -h
java org.antlr.v4.gui.TestRig GrammarName startRuleName
  [-tokens] [-tree] [-gui] [-ps file.ps] [-encoding encodingname]
  [-trace] [-diagnostics] [-SLL]
  [input-filename(s)]
Use startRuleName='tokens' if GrammarName is a lexer grammar.
Omitting input-filename makes rig read from stdin.

由于grun是java实现的,我们只能在目标代码为Java的情况下对g4文件的解析进行调试。所以使用grun工具的前提是先生成Java目标代码:

$antlr4 CSV.g4

然后调用grun以及其提供的各种选项对解析过程进行调试。

  • 图形化调试

通过下面结合了-gui选项的grun命令:

$grun CSV csvFile demo1.csv -gui

grun可以在新窗口中输出抽象语法树的全貌:

通过这样一个图形,我们可以清晰看出规则匹配是否如我们预期。

  • Tree型调试

通过下面结合了-tree选项的grun命令:

$grun CSV csvFile demo1.csv -tree

grun可以在命令行输出树型匹配结构,这个就等价于图形化调试截图中的左侧窗口。如果你就喜欢命令行方式的输出,可以试试这个。

(csvFile (hdr (row (field Details) , (field Month) , (field Amount) \n)) (row (field Mid Bonus) , (field June) , (field "$2,000") \n) (row field , (field January) , (field """zippo""") \n) (row (field Total Bonuses) , (field "") , (field "$5,000") \n))
  • 词法解析调试

grun还单独提供了针对词法分析阶段的调试命令行选项:-tokens:

使用下面命令:

$grun CSV csvFile demo1.csv -tokens

grun可以输出如下词法分析阶段的详细过程,通过这个输出,我们可以看出输入数据中的字符序列匹配情况,是否如预期的匹配到对应的词法规则上去了,比如CSV.g4中的两个词法规则:TEXT和STRING:

[@0,0:6='Details',<TEXT>,1:0]
[@1,7:7=',',<','>,1:7]
[@2,8:12='Month',<TEXT>,1:8]
[@3,13:13=',',<','>,1:13]
[@4,14:19='Amount',<TEXT>,1:14]
[@5,20:20='\n',<'\n'>,1:20]
[@6,21:29='Mid Bonus',<TEXT>,2:0]
[@7,30:30=',',<','>,2:9]
[@8,31:34='June',<TEXT>,2:10]
[@9,35:35=',',<','>,2:14]
[@10,36:43='"$2,000"',<STRING>,2:15]
[@11,44:44='\n',<'\n'>,2:23]
[@12,45:45=',',<','>,3:0]
[@13,46:52='January',<TEXT>,3:1]
[@14,53:53=',',<','>,3:8]
[@15,54:64='"""zippo"""',<STRING>,3:9]
[@16,65:65='\n',<'\n'>,3:20]
[@17,66:78='Total Bonuses',<TEXT>,4:0]
[@18,79:79=',',<','>,4:13]
[@19,80:81='""',<STRING>,4:14]
[@20,82:82=',',<','>,4:16]
[@21,83:90='"$5,000"',<STRING>,4:17]
[@22,91:91='\n',<'\n'>,4:25]
[@23,92:91='<EOF>',<EOF>,5:0]

此外,grun提供的-trace和-diagnostics均可以从不同角度为文法规则的正确性提供跟踪诊断信息。

为了方便使用,我将grun调试功能嵌入到Makefile中,通过make gui、make tokens、make tree等命令即可实现不同形式的调试。Makefile代码参见本文提供的代码示例csv2map

五. 为示例增加语义

通过grun的调试,只能说明我们定义的文法(CSV.g4)是正确的,是可以解析输入的数据(demo1.csv)的。但解析成功后的数据要怎么处理呢?这就需要我们为示例增加处理语义。

在这个例子中,我们模仿《antlr权威指南》书中的例子将demo1.csv的数据形式转换为另一种map形式输出,举例来说,就是将下面的csv数据:

Details,Month,Amount
Mid Bonus,June,"$2,000"
,January,"""zippo"""
Total Bonuses,"","$5,000"

转换为下面map形式:

[{Details=Mid Bonus, Month=June, Amount="$2,000"},
 {Details=, Month=January, Amount="""zippo"""},
 {Details=Total Bonuses, Month="", Amount="$5,000"}]

虽然前面生成了parser目录下的parser包,但是还远远不够,我们还需手工增加上述语义行为。

首先,我们先来创建一个go module,方便后续依赖版本管理和程序构建:

$go mod init csvparser

然后通过go mod tidy拉取必要的依赖包,主要是github.com/antlr/antlr4/runtime/Go/antlr这个antlr go runtime包。之后我们就可以创建main.go了,下面是该parser的main函数:

// github.com/bigwhite/experiments/tree/master/antlr/csv2map/main.go

func main() {
    csvFile := os.Args[1]
    is, err := antlr.NewFileStream(csvFile)
    if err != nil {
        fmt.Printf("new file stream error: %s\n", err)
        return
    }

    // Create the Lexer
    lexer := parser.NewCSVLexer(is)
    stream := antlr.NewCommonTokenStream(lexer, antlr.TokenDefaultChannel)

    // Create the Parser
    p := parser.NewCSVParser(stream)

    // Finally parse the expression
    l := &CSVMapListener{}
    antlr.ParseTreeWalkerDefault.Walk(l, p.CsvFile())
    fmt.Printf("%s\n", l.String())
}

我们通过命令行传入要解析的csv格式的文件,通过antlr包提供的NewFileStream创建输入数据流,并将该数据流传给新创建的lexer,经过lexer的解析后,我们得到token stream,经过前面的铺垫,我们知道token stream是要传给新创建的Parser。Parser会在内存中建立抽象语法树(见上面抽象语法树那张图)。

之后,也是最重要的就是遍历语法树,提取我们需要的信息了。前面说过,antlr基于CSV.g4仅仅是生成了一个CSVListener的接口以及一个空的BaseCSVListener的实现。但BaseCSVListener不能满足我们的要求,我们需要一个可以提取语法树中重要信息的CSVListener接口的实现,我这里称之为CSVMapListerner:

// github.com/bigwhite/experiments/tree/master/antlr/csv2map/csv_listener.go

type CSVMapListener struct {
    *parser.BaseCSVListener
    headers []string
    cm      []map[string]string
    fields  []string // a slice of fields in current row
}

我们看到,CSVMapListener首先嵌入了BaseCSVListener,“继承”了BaseCSVListener的所有方法实现,这使得CSVMapListener满足CSVListener接口。

CSVMapListener中的cm字段用于存储从抽象语法树中提取到的CSV数据信息,它本身是一个元素类型为map[string]string的切片;headers用于存储从抽象语法树中读取到的CSV文件的头信息;而fields则是代表CSV每一行数据的抽象。

我们不需要override BaseCSVListener的所有方法,我们只需在几个方法中保存提取到的信息即可。

整个CSV文件的关键数据单元是row,每当我们进入产生式规则row时,都需要为后续解析出的row信息准备好存储空间:

func (cl *CSVMapListener) EnterRow(c *parser.RowContext) {
    cl.fields = []string{} // create a new field slice
}

对应到CSVMapListener,就是override EnterRow方法,在该方法中创建一个新的fields slice。

在产生式规则row完成时,将fields信息存储起来,即override ExitRow方法,见下面代码:

func (cl *CSVMapListener) ExitRow(c *parser.RowContext) {
    // get the rule index of parent context
    if i, ok := c.GetParent().(antlr.RuleContext); ok {
        if i.GetRuleIndex() == parser.CSVParserRULE_hdr {
            // ignore this row
            return
        }
    }

    // it is a data row
    m := map[string]string{}

    for i, h := range cl.headers {
        m[h] = cl.fields[i]
    }
    cl.cm = append(cl.cm, m)
}

由于header也是一个row,我们不能将header当成普通row存储在cm中,所以在ExitRow中有一个是否是header row的判断。如果是header row,则啥也不做;否则创建一个map[string]string实例,将row信息存储在该map中,并append到cm的切片中保存起来。

如果row是header,我们只需要override ExitHdr方法,将fields信息保存到headers字段中备用,如下面代码:

func (cl *CSVMapListener) ExitHdr(c *parser.HdrContext) {
    cl.headers = cl.fields
}

下面的ExitField方法是提取row中每个field文本信息的:将每个field的文本信息追加到fields切片中保存起来:

func (cl *CSVMapListener) ExitField(c *parser.FieldContext) {
    cl.fields = append(cl.fields, c.GetText())
}

经过上述这些override方法后,我们就可以从抽象语法树中提取到我们需要的信息了,对应到main函数中的代码,我们将新创建一个CSVMapListener的实例,并将其传给antlr.ParseTreeWalkerDefault.Walk方法,后者会在特定时刻自动回调我们上面的override的方法来提取我们需要的信息:

// github.com/bigwhite/experiments/tree/master/antlr/csv2map/main.go

    l := &CSVMapListener{}
    antlr.ParseTreeWalkerDefault.Walk(l, p.CsvFile())

一旦信息都被提取到CSVMapListener的cm字段和headers字段中后,我们便可以按要求输出这些信息:

// github.com/bigwhite/experiments/tree/master/antlr/csv2map/csv_listener.go
func (cl *CSVMapListener) String() string {
    var s strings.Builder
    s.WriteString("[")

    for i, m := range cl.cm {
        s.WriteString("{")
        for _, h := range cl.headers {
            s.WriteString(fmt.Sprintf("%s=%v", h, m[h]))
            if !cl.lastHeader(h) {
                s.WriteString(", ")
            }
        }
        s.WriteString("}")
        if i != len(cl.cm)-1 {
            s.WriteString(",\n")
            continue
        }
    }
    s.WriteString("]")
    return s.String()
}

这个比较简单,就不赘述了。

以上main.go中的代码都是基于antlr的Parser的经典“套路”,大部分Parser都可以使用这些代码。你的重点在自定义Listener的实现上,就像本例中的CSVMapListener。

六. 小结

到这里我们就实现了一个可以解析CSV文件并将其中数据转换为特定格式输出的DSL解析器了。这个示例仅仅是说明了基于Antlr构建DSL解析器的原理与基本步骤。

简单回顾一下,基于Antlr实现DSL,第一要基于Antlr提供的类EBNF规则设计出DSL的文法,第二要基于antlr生成的代码实现一个DSL的Listener从抽象语法树提取你所需要的信息并构建执行语义。

在这个过程中,我们可以使用antlr提供的强大的调试工具来帮助我们解决问题,尤其是dsl文法中的问题。

本文中涉及的代码可以在这里下载。

七. 参考资料


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats