在Kubernetes 1.10.3上以Hard模式搭建EFK日志分析平台
在一年多之前,我曾写过一篇文章《使用Fluentd和ElasticSearch Stack实现Kubernetes的集群Logging》,文中讲解了如何在Kubernetes上利用EFK(elastic, fluentd, kibana)搭建一套可用的集中日志分析平台。当时的k8s使用的是1.3.7版本,创建EFK使用的是kubernetes项目中cluster/addons/fluentd-elasticsearch下面的全套yaml文件,yaml中Elastic Search的volume用的还是emptyDir,并未真正持久化。
经过一年多的发展,Kubernetes发生了“翻天覆地”的变化,EFK技术栈也有了很大的进展。虽然那篇文章中的方案、步骤以及问题的解决思路仍有参考价值,但毕竟“年代”不同了,有些东西需要“与时俱进”。恰好近期在协助同事搭建一个移动互联网医院的演示环境时,我又一次搭建了一套“较新”版本的EFK,这里记录一下搭建过程、遇到的坑以及问题的解决过程,算是对之前“陈旧知识”的一个更新吧。
一. 环境和部署方案
这次部署我使用了较新的Kubernetes stable版本:1.10.3,这是一个单master node和三个worker node组成的演示环境,集群由kubeadm创建并引导启动。经过这些年的发展和演进,kubeadm引导启动的集群已经十分稳定了,并且搭建过程也是十分顺利(集群使用的是weave network插件)。
在EFK部署方案上,我没有再选择直接使用kubernetes项目中cluster/addons/fluentd-elasticsearch下面的全套yaml文件,而是打算逐个组件单独安装的hard模式。
下面是一个部署示意图:
虽然Kubernetes在持久化存储方面有诸多机制和插件可用,但总体来说,目前的k8s在storage这块依旧是短板,用起来体验较差,希望Container Storage Interface, CSI的引入和未来发展能降低开发人员的心智负担。因此,这次我将Elastic Search放在了k8s集群外单独单点部署,并直接使用local file system进行数据存取;fluentd没有变化,依旧是以DaemonSet控制的Pod的形式运行在每个k8s node上; kibana部署在集群内部,并通过ingress将服务暴露到集群外面。
二. 部署Elastic Search
按照部署方案,我们将Elastic Search部署在k8s集群外面,但我们依旧使用容器化部署方式。Elastic Search的官方镜像仓库已经由docker hub迁移到elasticsearch自己维护的仓库了。
我们下载当前ElasticSearch的最新版6.2.4:
docker pull docker.elastic.co/elasticsearch/elasticsearch:6.2.4
# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.elastic.co/elasticsearch/elasticsearch 6.2.4 7cb69da7148d 8 weeks ago 515 MB
在本地创建elasticsearch的数据存储目录:~/es_data,修改该目录的owner和group均为1000:
# mkdir ~/es_data
# chmod g+rwx es_data
# chgrp 1000 es_data
# chown 1000 -R es_data
# ls -l /root/es_data/
total 8
drwxrwxr-x 2 1000 1000 4096 Jun 8 09:50 ./
drwx------ 8 root root 4096 Jun 8 09:50 ../
注意:务必对es_data按上述命令执行修改,否则在启动elasticsearch容器可能会出现如下错误:
[WARN ][o.e.b.ElasticsearchUncaughtExceptionHandler] [] uncaught exception in thread [main]
_*org.elasticsearch.bootstrap.StartupException: java.lang.IllegalStateException: Failed to create node environment*_
at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:125) ~[elasticsearch-6.2.4.jar:6.2.4]
... ...
Caused by: java.nio.file.AccessDeniedException: /usr/share/elasticsearch/data/nodes
at sun.nio.fs.UnixException.translateToIOException(UnixException.java:84) ~[?:?]
... ...
启动elasticsearch容器:
# docker run -d --restart=unless-stopped -p 9200:9200 -p 9300:9300 -v /root/es_data:/usr/share/elasticsearch/data --ulimit nofile=65536:65536 -e "bootstrap.memory_lock=true" --ulimit memlock=-1:-1 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:6.2.4
如果看到下面日志,说明elasticsearch容器启动成功了!
[INFO ][o.e.c.m.MetaDataCreateIndexService] [sGZc7Wa] [.monitoring-es-6-2018.06.08] creating index, cause [auto(bulk api)], templates [.monitoring-es], shards [1]/[0], mappings [doc]
[INFO ][o.e.c.r.a.AllocationService] [sGZc7Wa] Cluster health status changed from [YELLOW] to [GREEN] (reason: [shards started [[.monitoring-es-6-2018.06.08][0]] ...]).
检查es健康状态:
# curl http://127.0.0.1:9200/_cat/health
1528424599 02:23:19 docker-cluster green 1 1 1 1 0 0 0 0 - 100.0%
es工作一切健康!
三. 部署Fluentd
相比较而言,fluentd的部署相对简单,因为fluentd官网文档有明确的安装说明。由于k8s默认授权机制采用了RBAC,因此我们使用fluentd-daemonset-elasticsearch-rbac.yaml来创建fluentd daemonset。
不过在创建前,我们需要打开fluentd-daemonset-elasticsearch-rbac.yaml修改一下它连接的elasticsearch的地址信息:
containers:
- name: fluentd
image: fluent/fluentd-kubernetes-daemonset:elasticsearch
env:
- name: FLUENT_ELASTICSEARCH_HOST
value: "172.16.66.104" // 172.16.66.104就是我们的elasticsearch运行的节点的ip
接下来创建fluentd:
# kubectl apply -f fluentd-daemonset-elasticsearch-rbac.yaml
serviceaccount "fluentd" created
clusterrole.rbac.authorization.k8s.io "fluentd" created
clusterrolebinding.rbac.authorization.k8s.io "fluentd" created
daemonset.extensions "fluentd" created
查看某一个fluentd pod的启动日志如下:
# kubectl logs -f pods/fluentd-4rptt -n kube-system
[info]: reading config file path="/fluentd/etc/fluent.conf"
[info]: starting fluentd-0.12.33
[info]: gem 'fluent-plugin-elasticsearch' version '1.16.0'
[info]: gem 'fluent-plugin-kubernetes_metadata_filter' version '1.0.2'
[info]: gem 'fluent-plugin-record-reformer' version '0.9.1'
[info]: gem 'fluent-plugin-secure-forward' version '0.4.5'
[info]: gem 'fluentd' version '0.12.33'
[info]: adding match pattern="fluent.**" type="null"
[info]: adding filter pattern="kubernetes.**" type="kubernetes_metadata"
[info]: adding match pattern="**" type="elasticsearch"
[info]: adding source type="tail"
... ...
[info]: following tail of /var/log/containers/weave-net-9kds5_kube-system_weave-13ef6f321b2bc64dc920878c7d361440c0157b91f6025f23c631edb5feb3473a.log
[info]: following tail of /var/log/containers/fluentd-4rptt_kube-system_fluentd-bdc80586d5cafc10729fb277ce01cf28d595059eabf96b66324f32b3b6873e28.log
[info]: Connection opened to Elasticsearch cluster => {:host=>"172.16.66.104", :port=>9200, :scheme=>"http", :user=>"elastic", :password=>"obfuscated"}
... ...
没有报错!似乎fluentd启动ok了。
再来通过elasticsearch日志验证一下:
[INFO ][o.e.c.m.MetaDataCreateIndexService] [sGZc7Wa] [logstash-2018.06.07] creating index, cause [auto(bulk api)], templates [], shards [5]/[1], mappings []
[INFO ][o.e.c.m.MetaDataCreateIndexService] [sGZc7Wa] [logstash-2018.06.08] creating index, cause [auto(bulk api)], templates [], shards [5]/[1], mappings []
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.07/XetLly2ZQFKKd0JVvxl5fA] create_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.07/XetLly2ZQFKKd0JVvxl5fA] update_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.07/XetLly2ZQFKKd0JVvxl5fA] update_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.08/j5soBzyVSNOvBQg-E3NkCA] create_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.08/j5soBzyVSNOvBQg-E3NkCA] update_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.08/j5soBzyVSNOvBQg-E3NkCA] update_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.07/XetLly2ZQFKKd0JVvxl5fA] update_mapping [fluentd]
[INFO ][o.e.c.m.MetaDataMappingService] [sGZc7Wa] [logstash-2018.06.08/j5soBzyVSNOvBQg-E3NkCA] update_mapping [fluentd]
fluentd已经成功连接上es了!
四. 部署Kibana
我们将kibana部署到Kubernetes集群内,我们使用kubernetes项目中的cluster/addons/fluentd-elasticsearch下的kibana yaml文件来创建kibana部署和服务:
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/kibana-deployment.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/fluentd-elasticsearch/kibana-service.yaml
创建前,我们需要修改一下kibana-deployment.yaml:
... ...
image: docker.elastic.co/kibana/kibana:6.2.4 // 这里,我们使用最新的版本:6.2.4
- name: ELASTICSEARCH_URL
value: http://172.16.66.104:9200 //这里,我们用上面的elasticsearch的服务地址填入到value的值中
.... ...
创建kibana:
# kubectl apply -f kibana-service.yaml
service "kibana-logging" created
# kubectl apply -f kibana-deployment.yaml
deployment.apps "kibana-logging" created
查看启动的kibana pod,看到如下错误日志:
{"type":"log","@timestamp":"2018-06-08T07:09:08Z","tags":["fatal"],"pid":1,"message":"\"xpack.monitoring.ui.container.elasticsearch.enabled\" setting was not applied. Check for spelling errors and ensure that expected plugins are installed and enabled."}
FATAL "xpack.monitoring.ui.container.elasticsearch.enabled" setting was not applied. Check for spelling errors and ensure that expected plugins are installed and enabled.
似乎与xpack有关。我们删除kibana-deployment.yaml中的两个环境变量:XPACK_MONITORING_ENABLED和XPACK_SECURITY_ENABLED,再重新apply。查看kibana pod日志:
# kubectl logs -f kibana-logging-648dbdf986-bc24x -n kube-system
{"type":"log","@timestamp":"2018-06-08T07:16:27Z","tags":["status","plugin:kibana@6.2.4","info"],"pid":1,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2018-06-08T07:16:27Z","tags":["status","plugin:elasticsearch@6.2.4","info"],"pid":1,"state":"yellow","message":"Status changed from uninitialized to yellow - Waiting for Elasticsearch","prevState":"uninitialized","prevMsg":"uninitialized"}
... ...
{"type":"log","@timestamp":"2018-06-08T07:16:30Z","tags":["info","monitoring-ui","kibana-monitoring"],"pid":1,"message":"Starting all Kibana monitoring collectors"}
{"type":"log","@timestamp":"2018-06-08T07:16:30Z","tags":["license","info","xpack"],"pid":1,"message":"Imported license information from Elasticsearch for the [monitoring] cluster: mode: basic | status: active | expiry date: 2018-07-08T02:06:08+00:00"}
可以看到kibana启动成功!
使用kubectl proxy启动代理,在浏览器中建立sock5 proxy,然后在浏览器访问:http://localhost:8001/api/v1/namespaces/kube-system/services/kibana-logging/proxy, 你应该可以看到下面的kibana首页:
创建index pattern后,等待一会,查看边栏中的”Discover”,如果你看到类似下面截图中的日志内容输出,说明kibana可以正常从elasticsearch获取数据了:
五. 为kibana添加ingress
使用kubectl proxy查看kibana虽然简单,但略显麻烦,将kibana服务暴露到集群外更为方便。下面我们就给kibana添加带basic auth的ingress。
1. 部署ingress controller及默认后端(如果cluster已经部署过,则忽略此步骤)
我们选择k8s官方的ingress-nginx作为ingress controller,并部署默认后端default-backend,我们把ingress-nginx controller和default-backend统统部署在kube-system命令空间下。
下载https://raw.githubusercontent.com/kubernetes/ingress-nginx/master/deploy/mandatory.yaml
mandatory.yaml中的namespace的值都改为kube-system
docker pull anjia0532/defaultbackend:1.4
docker tag anjia0532/defaultbackend:1.4 gcr.io/google_containers/defaultbackend:1.4
docker pull quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.15.0
# kubectl apply -f mandatory.yaml
deployment.extensions "default-http-backend" created
service "default-http-backend" created
configmap "nginx-configuration" created
configmap "tcp-services" created
configmap "udp-services" created
serviceaccount "nginx-ingress-serviceaccount" created
clusterrole.rbac.authorization.k8s.io "nginx-ingress-clusterrole" created
role.rbac.authorization.k8s.io "nginx-ingress-role" created
rolebinding.rbac.authorization.k8s.io "nginx-ingress-role-nisa-binding" created
clusterrolebinding.rbac.authorization.k8s.io "nginx-ingress-clusterrole-nisa-binding" created
deployment.extensions "nginx-ingress-controller" created
此时nginx-ingress controller已经安装完毕,nginx-ingress controller本质上就是一个nginx,目前它还没有暴露服务端口,我们通过nodeport方式暴露nginx-ingress service到集群外面:
下载https://raw.githubusercontent.com/kubernetes/ingress-nginx/master/deploy/provider/baremetal/service-nodeport.yaml
修改service-nodeport.yaml:
apiVersion: v1
kind: Service
metadata:
name: ingress-nginx
namespace: kube-system
spec:
type: NodePort
ports:
- name: http
port: 80
targetPort: 80
nodePort: 30080
protocol: TCP
- name: https
port: 443
targetPort: 443
nodePort: 30443
protocol: TCP
selector:
app: ingress-nginx
# kubectl apply -f service-nodeport.yaml
service "ingress-nginx" created
# lsof -i tcp:30080
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
kube-prox 24565 root 9u IPv6 10447591 0t0 TCP *:30080 (LISTEN)
我们验证一下nginx-ingress controller工作是否正常:
在任意一个集群node上:
# curl localhost:30080
default backend - 404
2. 为kibana添加ingress
ingress是一种抽象。对于nginx ingress controller来说,创建一个ingress相当于在nginx.conf中添加一个server入口,并nginx -s reload生效。
我们创建kibana的ingress yaml:
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
annotations:
name: kibana-logging-ingress
namespace: kube-system
spec:
rules:
- host: kibana.tonybai.com
http:
paths:
- backend:
serviceName: kibana-logging
servicePort: 5601
由于ingress中的host只能是域名,这里用 kibana.tonybai.com,然后在/etc/hosts中增加该域名的ip地址映射。
创建kibana-logging-ingress:
# kubectl apply -f kibana-logging-ingress.yaml
ingress.extensions "kibana-logging-ingress" created
此时,我们打开浏览器,访问http://kibana.tonybai.com:30080,我们得到了如下结果:
{"statusCode":404,"error":"Not Found","message":"Not Found"}
我们再次用curl试一下:
# curl -L kibana.tonybai.com:30080
<script>var hashRoute = '/api/v1/namespaces/kube-system/services/kibana-logging/proxy/appl;
var defaultRoute = '/api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana';
var hash = window.location.hash;
if (hash.length) {
window.location = hashRoute + hash;
} else {
window.location = defaultRoute;
这显然不是我们预想的结果。我们查看一下kibana pod对应的日志,并对比了一下使用kubectl proxy访问kibana的日志:
通过ingress访问的错误日志:
{"type":"response","@timestamp":"2018-06-11T10:20:55Z","tags":[],"pid":1,"method":"get","statusCode":404,"req":{"url":"/api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana","method":"get","headers":{"host":"kibana.tonybai.com:30080","connection":"close","x-request-id":"b066d69c31ce3c9e89efa6264966561c","x-real-ip":"192.168.16.1","x-forwarded-for":"192.168.16.1","x-forwarded-host":"kibana.tonybai.com:30080","x-forwarded-port":"80","x-forwarded-proto":"http","x-original-uri":"/api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana","x-scheme":"http","cache-control":"max-age=0","upgrade-insecure-requests":"1","user-agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36","accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8","accept-language":"zh-CN,zh;q=0.9,en;q=0.8,zh-TW;q=0.7"},"remoteAddress":"192.168.20.5","userAgent":"192.168.20.5"},"res":{"statusCode":404,"responseTime":4,"contentLength":9},"message":"GET /api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana 404 4ms - 9.0B"}
通过kubectl proxy访问的正确日志:
{"type":"response","@timestamp":"2018-06-11T10:20:43Z","tags":[],"pid":1,"method":"get","statusCode":304,"req":{"url":"/ui/fonts/open_sans/open_sans_v13_latin_regular.woff2","method":"get","headers":{"host":"localhost:8001","user-agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36","accept":"*/*","accept-encoding":"gzip, deflate, br","accept-language":"zh-CN,zh;q=0.9,en;q=0.8,zh-TW;q=0.7","if-modified-since":"Thu, 12 Apr 2018 20:57:06 GMT","if-none-match":"\"afc44700053c9a28f9ab26f6aec4862ac1d0795d\"","origin":"http://localhost:8001","referer":"http://localhost:8001/api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana","x-forwarded-for":"127.0.0.1, 172.16.66.101","x-forwarded-uri":"/api/v1/namespaces/kube-system/services/kibana-logging/proxy/ui/fonts/open_sans/open_sans_v13_latin_regular.woff2"},"remoteAddress":"192.168.16.1","userAgent":"192.168.16.1","referer":"http://localhost:8001/api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana"},"res":{"statusCode":304,"responseTime":3,"contentLength":9},"message":"GET /ui/fonts/open_sans/open_sans_v13_latin_regular.woff2 304 3ms - 9.0B"}
我们看到通过ingress访问,似乎将/api/v1/namespaces/kube-system/services/kibana-logging/proxy/app/kibana这个url path也传递给后面的kibana了,而kibana却无法处理。
我们回头看一下kibana-deployment.yaml,那里面有一个env var:
- name: SERVER_BASEPATH
value: /api/v1/namespaces/kube-system/services/kibana-logging/proxy
问题似乎就出在这里。我们去掉这个env var,并重新apply kibana-deployment.yaml。然后再用浏览器访问:http://kibana.tonybai.com:30080/app/kibana,kibana的页面就会出现在眼前了。
但是这样更新后,通过kubectl proxy方式似乎就无法正常访问kibana了,这里也只能二选一了,我们选择ingress访问。
3. 添加basic auth for kibana-logging ingress
虽然kibana ingress生效了,但目前kibana ingress目前在“裸奔”,我们还是要适当加上一些auth的,我们选择basic auth,从原理上讲这是加到nginx上的basic auth,kibana自身并没有做basic auth:
我们借助htpasswd工具生成用户名和密码,并基于此创建secret对象:
# htpasswd -c auth tonybai
New password:
Re-type new password:
Adding password for user tonybai
# cat auth
tonybai:$apr1$pQuJZfll$KPfa1rXJUTBBKktxtbVsI0
#kubectl create secret generic basic-auth --from-file=auth -n kube-system
secret "basic-auth" created
# kubectl get secret basic-auth -o yaml -n kube-system
apiVersion: v1
data:
auth: dG9ueWJhaTokYXByMSRwUXVKWmZsbCRLUGZhMXJYSlVUQkJLa3R4dGJWc0kwCg==
kind: Secret
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"v1","data":{"auth":"dG9ueWJhaTokYXByMSRwUXVKWmZsbCRLUGZhMXJYSlVUQkJLa3R4dGJWc0kwCg=="},"kind":"Secret","metadata":{"annotations":{},"name":"basic-auth","namespace":"kube-system"},"type":"Opaque"}
creationTimestamp: 2018-06-11T23:05:42Z
name: basic-auth
namespace: kube-system
resourceVersion: "579134"
selfLink: /api/v1/namespaces/kube-system/secrets/basic-auth
uid: f6ec373e-6dcb-11e8-a0e8-00163e0cd764
type: Opaque
在kibana-logging-ingress.yaml中增加有关auth的annotations:
// kibana-logging-ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/auth-type: basic
nginx.ingress.kubernetes.io/auth-secret: basic-auth
nginx.ingress.kubernetes.io/auth-realm: "Authentication Required - tonybai"
name: kibana-logging-ingress
namespace: kube-system
spec:
rules:
- host: kibana.tonybai.com
http:
paths:
- backend:
serviceName: kibana-logging
servicePort: 5601
apply kibana-logging-ingress.yaml后,我们再次访问:kibana.tonybai.com:30080
至此,一个演示环境下的EFK日志平台就搭建完毕了。相信有了这种hard way的安装搭建经验,我们可以灵活应对针对其中某个组件的变种部署了(比如将elasticsearch放到k8s中部署)。
更多内容可以通过我在慕课网开设的实战课程《Kubernetes实战 高可用集群搭建、配置、运维与应用》学习。
51短信平台:企业级短信平台定制开发专家 https://tonybai.com/
smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。
著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。
我的联系方式:
微博:https://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite
微信赞赏:
商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。
评论