2024年十月月 发布的文章

认知负荷对编程语言选择和学习的影响

本文永久链接 – https://tonybai.com/2024/10/24/cognitive-load-impact-on-programming-language-choice-and-study

在《Go语言精进之路:从新手到高手的编程思想、方法和技巧》两卷书出版后,我收到了一些读者的反馈。其中一位读者提到:“为什么作者如此偏爱使用心智负担这个词?”当时我对此并未给予太多关注。然而,近期我阅读了一些关于认知心理学和脑科学的著作后,才意识到读者的反馈不仅仅是对该词频繁使用的关注,更可能暗示了用词不当的问题。

“心智负担”(Mental Load)指的是在处理多任务或日常生活安排时所需耗费的心理资源和精力,包括记忆、计划、组织以及应对各种任务所带来的精神压力。然而,在学习、思考和理解的情境中,特别是在编程语言的学习中,使用“认知负荷”(Cognitive Load)这一术语可能更为恰当。

认知负荷理论最初由澳大利亚新南威尔士大学的认知心理学家约翰·斯威勒(John Sweller)于1988年首先提出来的,旨在解释学习过程中的认知资源分配。认知负荷是指在学习、思考或解决问题时,大脑在处理信息和执行任务时所承受的负担。在选择编程语言时,认知负荷是一个至关重要的因素,指的是人们在学习和使用某种编程语言时,为理解语法、掌握工具和解决问题所需付出的心理负担和精力。

那么,在面对众多主流编程语言时,在不考虑市场需求与公司或组织强制学习的情况下,认知负荷究竟如何影响开发人员对编程语言的选择呢?在这篇文章中,我将进行一些不那么严谨,也非专业的粗略探讨,希望能够为大家带来一些启发。

1. 认知负荷在编程语言中的体现

认知负荷理论发展到今天,其总体被分为三种类型:

  • 内在认知负荷(Intrinsic Cognitive Load)

内在认知负荷,也称为固有负荷,是由学习材料本身的复杂性所决定的,它与学习任务的本质和内容密切相关。例如,编程语言的语法规则、数据类型内存管理并发模型等都是内在负荷的一部分。学习这些概念的难易程度主要取决于编程语言本身的设计和复杂度。

  • 外在认知负荷(Extraneous Cognitive Load)

外在负荷是由学习环境和教学方式引起的负担,通常是由于无关信息或低效的学习方法造成的。比如,配置开发环境、学习非必要的工具或被复杂的IDE界面困扰,都可能增加外在负荷。在编程语言学习中,清晰的文档和易于理解的教程可以显著减少外在负荷。

虽然外在负荷不是由编程语言语法本身决定的,但它会影响新手的学习体验。如果学习资源和工具太复杂或不直观,即使是简单的编程语言也会让人感到困难。

  • 相关认知负荷(Germane Cognitive Load)

相关认知负荷是指学习过程中专门用于理解、整合和构建知识结构的认知努力。它与思维加工、模式识别、知识内化等过程有关。在编程中,相关认知负荷指的是学习者在掌握编程思想、设计模式和编程习惯时所付出的努力。例如,理解如何在实际项目中应用编程概念,如何优化代码设计,以及如何解决编程中的复杂问题,这些过程都会增加相关认知负荷。这种负担是积极的,因为它有助于深入理解和长期记忆。

下面这张图来自网络,可以帮助我们进一步理解三类认知负荷(只是出发点来自教学角度):

由此可见,对于新手来说,学习一门编程语言时,外在认知负荷是第一道门槛,它决定了是否能坚持学习,还是选择“Hello and Bye”;内在认知负荷则是基础,是核心;相关认知负荷则是进阶挑战,决定了可以达到的高度

接下来,我们将针对一些主流编程语言,沿着新手入门学习编程语言的认知负荷先后顺序进行粗略对比。希望这能为大家提供在编程语言选择方面的有用信息,同时帮助不同阶段的学习者针对各自的认知负荷水平做好心理准备。

2. 主流编程语言的认知负荷对比

在探讨主流编程语言的认知负荷时,我们需要从外在认知负荷、内在认知负荷以及相关认知负荷这三个维度进行深入分析。这种分析不仅能帮助我们理解不同语言的特点,更能为选择合适的编程语言提供参考依据。

注:笔者是后端程序员出身,对前端语言比如Javascript、Typescript等了解有限,因此这里将使用像Go、Rust、C++等主流后端语言作为分析和对比的参考对象。

2.1 外在认知负荷的影响

在编程语言学习的初始阶段,外在认知负荷往往是最先遇到的挑战

Python在这方面表现出色,它简单的环境搭建流程让初学者能够快速开始编程之旅。只需安装一个解释器,新手就能立即开始编写代码。虽然在使用pip管理依赖时可能遇到一些包冲突的问题,但整体来说,在环境搭建、工具使用等外在认知负荷方面对初学者相当友好。

Go语言同样提供了令人称道的开发体验。它的工具链安装过程直观明了,跨平台支持也十分完善。特别值得一提的是,自从Go 1.11引入go modules以来,依赖管理变得更加自动化和直观。虽然对新手来说,理解版本控制可能需要一些时间。此外,Go团队也给出了Go项目布局的官方建议,为开发者进行代码组织提供了清晰的参考。

相比之下,C++的环境搭建则显得较为复杂。开发者需要安装编译器,配置IDE,这些步骤对新手来说都构成了不小的挑战。加上缺乏统一的包管理工具(尽管vcpkgconan等工具正在改变这一现状),以及灵活但缺乏标准的项目结构,都让C++的外在认知负荷明显高于其他语言。

Rust通过其官方工具链安装工具rustup提供了相对简便的环境搭建方式。它的Cargo包管理器集成度高,使用便捷,而且项目结构的标准化程度高,这些特点都有效降低了外在认知负荷。

Java则介于两个极端之间。它需要安装JDK并配置环境变量(如JAVA_HOME、CLASS_PATH等),这个过程对新手来说可能有些繁琐。虽然Maven和Gradle这样的依赖管理工具功能强大,但学习曲线较陡峭。不过,Java严格的项目布局规范在初期可能显得死板,但从长远来看反而有助于培养良好的工程习惯。

过了环境安装、工具使用和项目布局这些“外在认知负荷”的关卡后,语言自身的复杂性便会成为新手面前的更大的挑战。

2.2 内在认知负荷考量

谈到语言本身的复杂性,Python的设计理念“简单胜于复杂”使其成为认知负荷最低的选择之一。它的语法接近自然语言,几乎不需要特别的学习就能读懂基本的代码结构。这种简洁性使得Python特别适合编程初学者,以至于主流的儿童编程教学大多使用Python(当然一些启蒙教学使用的是scratch)。

Go语言同样以简洁著称,它的语法设计注重一致性和可读性。虽然保留了指针这样的底层特性,可能会让某些初学者感到困惑,但整体而言,Go的学习曲线相当平缓。值得注意的是,Go 1.18引入泛型后,虽然提升了语言的表达能力,但也增加了一定的复杂性。至于Go是否适合作为从零开始编程的新手,也是见仁见智。

C++的内在认知负荷则明显较高。它支持多种编程范式,包括面向过程、面向对象、模板编程等,这些范式和特性固然强大,但对初学者来说往往构成了较大的认知负担。特别是在处理多态、模板元编程等高级特性时,学习曲线会变得异常陡峭。

Rust的内在认知负荷同样不低,但事实证明其复杂性是有意义的。它的所有权系统和借用检查器虽然增加了学习难度,但这些机制对于理解系统编程的本质非常有帮助,同时提高了程序在运行时的安全性。新手在最初接触这些概念时可能会感到困惑,但掌握后会对内存安全有深刻的理解。

Java的内在认知负荷介于中等水平。它的面向对象语法虽然比Python或Go略显繁琐,但整体而言还算直观。Java的复杂性主要体现在面向对象设计模式、泛型和异常处理等特性上,这些概念需要时间来消化和掌握。

2.3 相关认知负荷的深入分析

在实际应用知识解决问题时,各种语言呈现出不同的特点。

Python的优势在于它能让学习者快速将知识付诸实践。其丰富的标准库和生态、简洁的语法使得从学习到应用的过程异常顺畅。无论是数据科学还是Web开发,Python都能让新手快速看到成果。它支持多种编程范式,并且社区的PEP 8规范为代码风格提供了清晰的指导。

Go语言在知识应用方面同样表现出色。它的工具链完善,容易将所学付诸实践。特别是在服务器端开发领域,Go的并发模型和简洁的语法让新手能够相对轻松地构建高效的后端服务。虽然Go不像传统的面向对象语言那样依赖继承体系,但其接口机制和组合方式为代码设计提供了优雅的解决方案。

C++的相关认知负荷较高,主要体现在将理论知识转化为实践时面临的挑战。内存管理和性能优化这些概念需要大量实践才能真正掌握。它支持多种编程范式,这种灵活性虽然强大,但对初学者来说往往是一把双刃剑。由于缺乏统一的编码规范,新手可能在选择最佳实践时感到困惑。

Rust在这方面呈现出独特的特点。它的所有权系统要求开发者在实践中深入思考内存管理问题,这个过程虽然充满挑战,但却能培养扎实的系统编程思维。Rust社区提供的编码规范和工具链都很完善,有助于形成良好的编程习惯。

Java则以其企业级开发的特点著称。它要求开发者深入理解面向对象编程的核心概念,这个过程需要较长时间的积累。Java的设计模式体系完备,社区的编码规范成熟,这些特点有助于培养专业的工程思维,但对新手来说可能需要更多的时间和耐心。

2.4 综合评估

通过以上分析,我们可以看出不同语言在认知负荷方面的特点。

Python以其全方位的低认知负荷成为初学者的理想选择。

Go语言通过简洁的设计和完善的工具链在降低认知负荷方面做出了显著成效。

Java虽然相对繁琐,但其成熟的生态系统和规范的开发流程为长期发展提供了良好基础。

Rust和C++的学习曲线较陡,但它们在系统编程和性能优化方面的深度让投入的学习成本变得有价值。

在理解了编程语言的认知负荷特点后,我们不妨再从心理学的角度,特别是借助三脑理论的视角,来探讨初学者是如何在面对不同编程语言时做出选择的。

3. 初学者的编程语言学习决策过程

三脑理论(Triune Brain Theory)由Paul D. MacLean于1970年提出的理论假说,该理论将人脑分为三个层次,如下图所示:


来自维基百科

  • 爬虫脑(Reptilian Brain):也称原始脑,负责基本生存反应,包括对威胁的快速反应和本能行为。
  • 情绪脑(Limbic System):处理情绪和动机,影响记忆形成和社交行为。
  • 理性脑(Neocortex):负责高级认知功能,如逻辑思考、语言处理和复杂决策。

注:三脑理论提出较早,如今有新的理论认为三脑理论毫无依据。不过这里我们假定这个理论是正确和适用的。

三脑理论影响初学者的编程学习决策的过程是怎样的呢?这个过程往往涉及本能反应(爬虫脑主导)、情感体验(情绪脑主导)和理性思考(理性脑主导)三个层面的互动。我们继续往下看。

3.1 初学阶段的决策历程

在首次接触编程语言时,学习者的反应往往是多层次的。本能层面的反应最为直接,面对像C++这样认知负荷较高的语言时,很多人会本能地产生畏惧感。这种反应不是简单的怯懦,而是大脑对复杂性的自然防御机制。相反,Python这类认知负荷较低的语言则较少触发这种应激反应,使得学习者能够保持相对轻松的心态。

情感层面的体验则更为复杂。当成功运行第一个程序时,无论使用什么语言,都会带来成就感。但随着学习的深入,不同语言带来的情感体验会产生分化。举个例子,我在早期学习Java时,仅仅是配置环境变量这样的基础工作就带来了挫折感,这种负面情绪很容易影响学习的积极性。而Rust虽然入门门槛较低,但一旦进入到所有权系统的学习,很多人会因为频繁的编译错误而感到沮丧。

理性思考则是决策过程中最后但也是最重要的环节。这包括对语言应用领域的评估、职业发展前景的考虑,以及个人学习时间和精力投入的权衡。这个阶段的决策通常更加慎重,也更具有长期性。

3.2 深入学习阶段的转变

随着学习的深入,最初的决策依据往往会发生改变。原本令人望而生畏的特性可能转变为吸引力的来源。这种转变在Rust的学习过程中特别明显,当开发者逐渐理解了所有权系统的价值,最初的困惑可能转化为对语言设计的欣赏

在这个阶段,情感体验也往往变得更加丰富。克服困难带来的成就感可能超越了简单的编程快感,这也解释了为什么一些看似“难学”的语言反而能够培养出更加忠实的用户群体。Rust连续多年在最受欢迎编程语言榜单上位居前列,很大程度上就源于这种深层的技术认同感

理性思考在这个阶段会更加全面,不再局限于语言本身的特性,而是扩展到整个技术生态系统的考量。开发者会更多地思考语言的性能特点、社区活跃度、工具链完善程度等因素。

3.3 认知负荷与学习效果

从短期来看,低认知负荷的语言确实能够提供更平缓的学习曲线,让入门过程更加顺畅。Python和Go在这方面的优势明显,它们能让学习者快速进入实践阶段,建立信心。但这种便利性有时也会带来一个意想不到的问题:学习者可能在掌握了基础语法后陷入平台期,难以实现质的突破。这也是为什么经常有读者询问如何才能在Go语言编程中更进一步

相比之下,高认知负荷的语言虽然入门较难,但往往能够培养更深入的编程思维。比如Rust的所有权系统,虽然增加了学习难度,但这种设计迫使开发者深入思考内存管理的问题,从而建立更扎实的系统编程基础。C++的模板元编程虽然复杂,但掌握后能够大大提升代码的抽象能力和复用效率。

不过,我们也要警惕过高的认知负荷带来的风险。如果学习过程中的挫折感持续累积,很容易导致半途而废。每年入门一次Rust的真实案例也屡见不鲜。这就要求我们在选择编程语言时,既要考虑个人的学习能力和时间投入,也要权衡职业发展的需求,找到一个适合自己的平衡点。

4. 小结

在探讨了认知负荷对编程语言学习的影响后,我们可以得出一些粗浅的见解:编程语言的学习绝非简单的语法掌握过程,而是一个涉及多个认知维度的复杂历程。从开发环境的搭建到语言特性的理解,从基础概念的掌握到工程实践的应用,每个阶段都会给学习者带来不同程度的认知压力。理解这些认知负荷的本质,有助于我们做出更明智的编程语言学习的选择。

对于编程新手来说,像Python和Go这样在各个维度都尽量降低认知负荷的语言,无疑是入门的理想选择。但我们也要认识到,较高的认知负荷未必就是缺点。就像Rust和C++这样的语言,它们的学习曲线虽然陡峭,但这种”困难”往往蕴含着宝贵的学习机会。通过克服这些认知挑战,开发者能够建立起更深入的系统编程认知,形成更扎实的技术功底。

选择合适的编程语言,某种程度上就像选择一位长期相处的伙伴。这个选择不仅要考虑语言本身的特点,还要权衡个人的学习能力、职业规划和时间投入。认知负荷理论为我们提供了一个有价值的分析框架,但最终的选择还是要回归到个人的实际需求和发展目标。正如没有完美的编程语言一样,也没有放之四海而皆准的学习路径。找到适合自己的平衡点,或许才是最务实的学习策略。

最后,在人工智能编码辅助技术飞速发展的今天,开放的学习心态和持续学习的能力,可能比选择某个特定的编程语言更为重要。毕竟唯一不变的可能就是变化本身。

5. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go开发者的密码学导航:crypto库使用指南

本文永久链接 – https://tonybai.com/2024/10/19/go-crypto-package-design-deep-dive

Go号称“开箱即用”,这与其标准库的丰富功能和高质量是分不开的。而在Go标准库中,crypto库(包括crypto包、crypto目录下相关包以及golang.org/x/crypto下的补充包)又是Go社区最值得称道的Go库之一。

crypto库由Go核心团队维护,确保了最高级别的安全标准和及时的漏洞修复,为开发者提供了可靠的安全保障。crypto还涵盖了从基础的对称加密到复杂的非对称加密,以及各种哈希函数和数字签名算法等广泛的加解密算法支持,以满足Go开发者的各种需求为目的,而不是与其他密码学工具包竞争。此外,crypto库还经过精心优化,能够在不同硬件平台上尽可能地保证高效的执行性能。值得一提的是,crypto库还提供了统一的API设计,使得不同加密算法的使用方式保持一致,也降低了开发者的学习成本。

可以说Go crypto库Go生态中密码学功能的核心,它为Go开发者提供了一套全面、安全、保持现代化提供安全默认值易于使用的密码学工具,使得在Go应用程序中实现各种密码学功能需求时变得简单而可靠。

不过要理解并得心应手的使用crypto库中的相关密码学包仍然并非易事,这是因为密码学涉及数学、密码分析、计算机安全等多个学科,概念多,算法也十分复杂,而大多程序员对密码学的了解又多停留在使用层面,缺乏对其原理和底层机制的深入认知,甚至连每个包的用途都不甚了解。这导致很多开发者浏览了crypto相关包之后,甚至不知道该使用哪个包。

所以在这篇文章中,我想为Go开发者建立一张crypto库的“地图”,这张“地图”将帮助我们从宏观角度理解crypto库的结构,帮助大家快速精准选择正确的包。并且通过对crypto相关包设计的理解,轻松掌握crypto相关包的使用模式。

注:Go标准库crypto库的第一任负责人是Adam Langley(agl),他开创了Go crypto库,他在招募和培养了Filippo Valsorda后离开了Go项目,后者成为了Go crypto的负责人。Filippo在Go项目工作若干年后,把负责人交给了Roland Shoemaker,即现任Go团队安全组的负责人。当然Shoemaker也是Filippo招募到Go团队中的。

下面我们首先来看看Go crypto库的“整体架构”。

1. 标准库crypto与golang.org/x/crypto

Go的密码学功能(即我们统一称的crypto库)分为两个主要部分:标准库的crypto相关包和扩展库golang.org/x/crypto。这种分离设计有其特定的目的和优势:

Go标准库的crypto相关包,包含了最基础、最稳定和使用最广泛的密码学算法。这些算法实现经过Go团队的严格审查,保证了长期稳定性和向后兼容性。同时,这些包是随Go安装包分发的,使用时再无需引入额外的依赖。

而golang.org/x/crypto则号称是Go标准库crypto相关包的补充库,虽然它同样由Go团队维护,但由于不是标准库,它可以包含更多实验性或较新的密码学算法及实现,并可以更快速的迭代和更新。这样它也可以成为Go标准库中一些crypto相关包的“孵化器”,就像当年golang.org/x/net/context提升为标准库context一样。

同时golang.org/x/crypto也是Go标准库依赖的为数极少的外部包之一。比如,下面是Go 1.23.0标准库go.mod文件的内容:

module std

go 1.23

require (
    golang.org/x/crypto v0.23.1-0.20240603234054-0b431c7de36a
    golang.org/x/net v0.25.1-0.20240603202750-6249541f2a6c
)

require (
    golang.org/x/sys v0.22.0 // indirect
    golang.org/x/text v0.16.0 // indirect
)

我们看到Go标准库依赖特定版本的golang.org/x/crypto模块。

与标准库不同的是,如果你要使用golang.org/x/crypto模块中的密码学包,你就需要单独引入项目依赖。此外,golang.org/x 下的包通常被视为实验性或扩展包,因此它们并不严格遵循Go1兼容性承诺。换句话说,这些包在API稳定性上没有与标准库相同的保证,可能会有非向后兼容的更改。

综上,我们看到Go标准库crypto与golang.org/x/crypto的这种分离策略,允许Go团队在保持标准库稳定性的同时,也能够灵活地引入新的密码学算法和技术。

接下来,我们来看看crypto库的整体结构设计原则,这些原则对理解整个crypto库大有裨益。

2. 整体结构设计原则

Go的crypto库整体上的结构设计遵循了几个原则:

2.1 统一接口和类型抽象

首先是统一接口和类型抽象,这在最顶层的crypto包中就能充分体现。

crypto包定义了一个Hash类型和一个创建具体哈希实现的方法。这个设计允许统一管理不同的哈希算法,同时保持了良好的可扩展性:

// $GOROOT/src/crypto/crypto.go

type Hash uint

// New returns a new hash.Hash calculating the given hash function. New panics
// if the hash function is not linked into the binary.
func (h Hash) New() hash.Hash {
    if h > 0 && h < maxHash {
        f := hashes[h]
        if f != nil {
            return f()
        }
    }
    panic("crypto: requested hash function #" + strconv.Itoa(int(h)) + " is unavailable")
}

// HashFunc simply returns the value of h so that [Hash] implements [SignerOpts].
func (h Hash) HashFunc() Hash {
    return h
}

// RegisterHash registers a function that returns a new instance of the given
// hash function. This is intended to be called from the init function in
// packages that implement hash functions.
func RegisterHash(h Hash, f func() hash.Hash) {
    if h >= maxHash {
        panic("crypto: RegisterHash of unknown hash function")
    }
    hashes[h] = f
}

var hashes = make([]func() hash.Hash, maxHash)

Hash类型作为一个统一的标识符,用于表示不同的哈希算法。New方法则“像一个工厂方法”,用于创建具体的哈希实现。新的哈希算法可以很容易地添加到这个系统中,只需定义一个新的常量并提供相应的实现,并将实现通过RegisterHash注册到hashes中即可。下面是一个使用sha256算法的示例(仅做演示,并非惯例写法):

package main

import (
    "crypto"
    _ "crypto/sha256" // register h256 to hashes
)

func main() {
    ht := crypto.SHA256
    h := ht.New()
    h.Write([]byte("hello world"))
    sum := h.Sum(nil)
    println(sum)
}

注:也许是早期标准库的设计问题,hash接口目前没有放到crypto下面,而是在标准库顶层目录下。crypto库中的hash实现通过New方法返回真正的hash.Hash实现。

crypto包还定义了几个关键接口,这些接口被各个子包实现,从而实现了高度的可扩展性和互操作性,比如下面的Signer、SignerOpts、Decrypter接口:

// Signer is an interface for an opaque private key that can be used for
// signing operations. For example, an RSA key kept in a hardware module.
type Signer interface {
    Public() PublicKey
    Sign(rand io.Reader, digest []byte, opts SignerOpts) (signature []byte, err error)
}

// SignerOpts contains options for signing with a [Signer].
type SignerOpts interface {
    HashFunc() Hash
}

// Decrypter is an interface for an opaque private key that can be used for
// asymmetric decryption operations. An example would be an RSA key
// kept in a hardware module.
type Decrypter interface {
    Public() PublicKey
    Decrypt(rand io.Reader, msg []byte, opts DecrypterOpts) (plaintext []byte, err error)
}

以Signer接口为例,这个Signer接口为不同的签名算法(如RSA、ECDSA、Ed25519等)提供了一个统一的抽象。下面是一个使用统一Signer接口但不同Signer实现的示例:

func signData(signer crypto.Signer, data []byte) ([]byte, error) {
    hash := crypto.SHA256
    h := hash.New()
    h.Write(data)
    digest := h.Sum(nil)

    return signer.Sign(rand.Reader, digest, hash)
}

func main() {
    rsaKey, _ := rsa.GenerateKey(rand.Reader, 2048)
    signature, _ := signData(rsaKey, []byte("Hello, World!"))
    println(signature)

    ecdsaKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
    signature, _ = signData(ecdsaKey, []byte("Hello, World!"))
    println(signature)
}

在这个例子中,我们看到了如何使用相同的signData函数来处理不同类型的签名算法,这体现了统一接口带来的灵活性和一致性。

在crypto目录下的各个子包中,上述原则也有很好的体现,比如cipher包就定义了Block、Stream等接口,然后aes、des等对称加密包也都提供了创建实现了这些接口的类型的函数,比如aes.NewCipher以及des.NewCipher等。

2.2 模块化

每个子包专注于特定的功能,这种模块化设计使得每个包都相对独立,便于维护和使用。以aes包和des包为例:

// crypto/aes/cipher.go
func NewCipher(key []byte) (cipher.Block, error) {
    // AES specific implementation
}

// crypto/des/cipher.go
func NewCipher(key []byte) (cipher.Block, error) {
    // DES specific implementation
}

这两个包都实现了相同的NewCipher函数,但内部实现完全不同,专注于各自的加密算法。

2.3 易用性与灵活性的平衡

Go crypto库中的很多包既提供了可以满足大多数常见用例的需求、易用性很好的高级API,同时也提供了更灵活的低级API,允许开发者在需要时进行更精细的控制或自定义实现。

让我们以SHA256哈希函数为例来说明这一点:

// 高级API
func highLevelAPI(data []byte) [32]byte {
    return sha256.Sum256(data)
}

// 低级API
func lowLevelAPI(data []byte) [32]byte {
    h := sha256.New()
    h.Write(data)
    return *(*[32]byte)(h.Sum(nil))
}

func main() {
    fmt.Println(lowLevelAPI([]byte("hello world")))
    fmt.Println(highLevelAPI([]byte("hello world")))
}

在这个例子中,sha256.Sum256是高级API,而lowLevelAPI中使用的那套逻辑则是对低级API的组合以实现Sum256功能。

2.4 可扩展性

基于“统一接口和类型抽象”原则设计的crypto库可以让用户轻松地集成自己的实现或第三方库,这种可扩展性便于我们添加新的算法或功能,而不影响现有结构。 比如,我们可以像这下面这样实现自定义的cipher.Block:

type MyCustomCipher struct {
    // ...
}

func (c *MyCustomCipher) BlockSize() int {
    // ...
}

func (c *MyCustomCipher) Encrypt(dst, src []byte) {
    // ...
}

func (c *MyCustomCipher) Decrypt(dst, src []byte) {
    // ...
}

之后,这个自定义的cipher.Block实现便可以直接用在标准库提供的分组密码模式中。

作为crypto库的扩展和实验库,golang.org/x/crypto也遵循了与标准库crypto相关包一致的设计原则,这里就不举例说明了。

有了上述对crypto库的整体设计原则的认知后,我们再来看一下Go标准库crypto目录下的子包结构,了解了这个结果,你就会像拥有了crypto库的“导航”,可以顺利方便地找到你想要的密码学包了。

3. 子包结构概览

众所周知,Go标准库crypto目录下不仅有crypto包,还有众多种类的密码学包,下面这张示意图对这些包进行了简单分类:

下面我会按照图中的类别对各个包做简单介绍,包括功能、用途、简单的示例以及是否推荐使用。密码学一直在发展,很多算法因为不再“牢不可破”而逐渐不再被推荐使用。但Go为了保证Go1兼容性,这些包依赖留在了Go标准库中。

我们自上而下,先从哈希函数开始。

3.1 哈希函数

3.1.1 md5

  • 功能:实现MD5哈希算法
  • 用途:生成数据的128位哈希值
  • 示例:
import "crypto/md5"
hash := md5.Sum([]byte("hello world"))
  • 使用建议:不推荐用于安全相关用途,因为MD5已被证明不够安全。

3.1.2 sha1

  • 功能:实现SHA-1哈希算法
  • 用途:生成数据的160位哈希值
  • 示例:
import "crypto/sha1"
hash := sha1.Sum([]byte("hello world"))
  • 使用建议:不推荐用于安全相关用途,因为SHA-1已被证明存在碰撞风险。

3.1.3 sha256

  • 功能:实现SHA-256哈希算法
  • 用途:生成数据的256位哈希值
  • 示例:
import "crypto/sha256"
hash := sha256.Sum256([]byte("hello world"))
  • 使用建议:推荐使用,安全性高。

3.1.4 sha512

  • 功能:实现SHA-512哈希算法
  • 用途:生成数据的512位哈希值
  • 示例:
import "crypto/sha512"
hash := sha512.Sum512([]byte("hello world"))
  • 使用建议:推荐使用,安全性很高。

3.2 加密和解密

3.2.1 aes

  • 功能:实现AES(Advanced Encryption Standard)对称加密算法
  • 用途:数据对称加密和解密
  • 示例:
import "crypto/aes"
key := []byte("example key 1234") // 16字节的key
block, _ := aes.NewCipher(key)
  • 使用建议:推荐使用,是目前最广泛使用的对称加密算法。

3.2.2 des

  • 功能:实现DES(Data Encryption Standard)和Triple DES加密算法
  • 用途:数据对称加密和解密
  • 示例:
import "crypto/des"
key := []byte("example!") // 8字节的key
block, _ := des.NewCipher(key)
  • 使用建议:不推荐使用DES,密钥长度不足(DES使用56位密钥,实际上是64位,但其中8位是奇偶校验位,不用于加密),容易被暴力破解。推荐使用AES;Triple DES在某些遗留系统中仍在使用。

3.2.3 rc4

  • 功能:实现RC4(Rivest Cipher 4)流加密算法
  • 用途:流数据的加密和解密
  • 示例:
import "crypto/rc4"
key := []byte("secret key")
cipher, _ := rc4.NewCipher(key)
  • 使用建议:不推荐使用,因为RC4已被证明存在安全漏洞。由于这些已知的安全问题,RC4已经被许多现代加密协议和应用所弃用。例如,TLS(Transport Layer Security)协议已经移除了对RC4的支持。

3.2.4 cipher

  • 功能:定义了块加密的通用接口
  • 用途:为其他加密算法提供通用的加密和解密方法
  • 示例:
import "crypto/cipher"
// 使用AES-GCM模式
block, _ := aes.NewCipher(key)
aesgcm, _ := cipher.NewGCM(block)
  • 使用建议:推荐使用,特别是GCM等认证加密模式。

3.3 签名和验证

3.3.1 dsa

  • 功能:实现数字签名算法(DSA, Digital Signature Algorithm)
  • 用途:生成和验证数字签名
  • 示例:
import "crypto/dsa"
var privateKey dsa.PrivateKey
dsa.GenerateKey(&privateKey, rand.Reader)
  • 使用建议:目前的趋势是DSA在许多应用中不再被推荐使用。DSA的安全性高度依赖于密钥长度。随着计算能力的提升,较短的DSA密钥长度(例如1024位)已经不再被认为是安全的。NIST建议使用更长的密钥长度(例如2048位或更长),但这会增加计算复杂性和资源消耗。ECDSA使用椭圆曲线密码学,可以在更短的密钥长度下提供相同级别的安全性。

3.3.2 ecdsa

  • 功能:实现椭圆曲线数字签名算法(ECDSA, Elliptic Curve Digital Signature Algorithm)
  • 用途:生成和验证数字签名
  • 示例:
import "crypto/ecdsa"
privateKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
  • 使用建议:强烈推荐使用,安全性高且效率好。

3.3.3 ed25519

  • 功能:实现Ed25519签名算法(Edwards-curve Digital Signature Algorithm with Curve25519)
  • 用途:生成和验证数字签名
  • 示例:
import "crypto/ed25519"
publicKey, privateKey, _ := ed25519.GenerateKey(rand.Reader)
  • 使用建议:强烈推荐使用,安全性高且性能优秀。Ed25519提供了比传统ECDSA更高的安全性和性能,同时减少了某些类型的实现风险。因此,在选择数字签名算法时,Ed25519是一个非常有吸引力的选项,尤其是在需要高性能和强安全保障的应用中。

3.3.4 rsa

  • 功能:实现RSA(Rivest–Shamir–Adleman)加密和签名算法
  • 用途:非对称加密、数字签名
  • 示例:
import "crypto/rsa"
privateKey, _ := rsa.GenerateKey(rand.Reader, 2048)
  • 使用建议:关于是否推荐使用RSA,这取决于具体的应用场景和安全需求。RSA在许多应用中仍然被广泛使用,尤其是在需要公钥加密和数字签名的场景。它是一个经过时间考验的算法,有着良好的安全记录。随着计算能力的提升,特别是量子计算的发展,RSA的安全性可能会受到威胁。此外,对于某些高性能或资源受限的环境,RSA可能不如其他算法(如椭圆曲线加密算法,如ECDSA或Ed25519)高效。尤其是签名,ECDSA或Ed25519可能是更好的选择。

3.4 密钥交换

3.4.1 ecdh

  • 功能:实现椭圆曲线Diffie-Hellman密钥交换(Elliptic Curve Diffie-Hellman)
  • 用途:安全地在不安全的通道上协商共享密钥
  • 示例:
import "crypto/ecdh"
curve := ecdh.P256()
privateKey, _ := curve.GenerateKey(rand.Reader)
  • 使用建议:ECDH是一个强大且高效的密钥交换协议,在许多现代安全通信中被推荐使用,是现代密钥交换的首选方法。

3.5 安全随机数生成

3.5.1 rand

  • 功能:提供加密安全的随机数生成器
  • 用途:生成密钥、随机填充等
  • 示例:
import "crypto/rand"
randomBytes := make([]byte, 32)
rand.Read(randomBytes)
  • 使用建议:强烈推荐使用,不要使用math/rand包(包括math/rand/v2)生成密码学相关的随机数(这些随机数是伪随机)。

3.6 证书和协议

3.6.1 tls

  • 功能:实现传输层安全(TLS, Transport Layer Security)协议
  • 用途:安全网络通信
  • 示例:
import "crypto/tls"
config := &tls.Config{MinVersion: tls.VersionTLS12}
  • 使用建议:强烈推荐使用,是保护网络通信的标准方法。

3.6.2 x509

  • 功能:实现X.509公钥基础设施标准
  • 用途:处理数字证书、证书签名请求(CSR)等
  • 示例:
import "crypto/x509"
cert, _ := x509.ParseCertificate(certDER)
  • 使用建议:推荐使用,是处理数字证书的标准方法。

3.7. 辅助功能

3.7.1 elliptic

  • 功能:实现几个标准的椭圆曲线
  • 用途:为ECDSA和ECDH提供基础
  • 示例:
import "crypto/elliptic"
curve := elliptic.P256()
  • 使用建议:推荐使用,但通常不直接使用,而是通过ecdsa或ecdh包间接使用。

3.7.2 hmac

  • 功能:实现密钥散列消息认证码(HMAC, Hash-based Message Authentication Code)
  • 用途:消息完整性验证
  • 示例:
import "crypto/hmac"
h := hmac.New(sha256.New, []byte("secret key"))
h.Write([]byte("message"))
  • 使用建议:推荐使用,是保护数据完整性和消息认证的标准方法。

3.7.3 subtle

  • 功能:提供一些用于实现加密功能的常用但容易出错的操作
  • 用途:比较、常量时间操作等
  • 示例:
import "crypto/subtle"
equal := subtle.ConstantTimeCompare([]byte("a"), []byte("b"))
  • 使用建议:推荐在需要时使用,有助于防止时序攻击。

结合上面两节,我们看到crypto库的内部依赖结构设计得非常巧妙,以最小化耦合。大多数子包依赖于crypto基础包中定义的接口和类型。crypto/subtle包提供了一些底层的辅助函数,被多个其他包使用。每个加密算法包(如crypto/aes,crypto/rsa)通常是独立的,减少了包间的直接依赖。一些高级功能包(如crypto/tls)会依赖多个基础算法包。大多数需要随机性的包都依赖crypto/rand作为安全随机源。

此外,crypto库与其他Go标准库可紧密集成,包括:

  • 与io包集成:使用io.Reader和io.Writer接口,便于流式处理和与其他I/O操作集成。
  • 与encoding相关包集成:比如与encoding/pem和encoding/asn1包配合,用于处理密钥和证书的编码。
  • 与hash包集成:加密哈希函数实现了hash.Hash接口,保持一致性。
  • 与net包集成:如crypto/tls包与net包紧密集成,提供安全的网络通信。

接下来,再来看看golang.org/x/crypto扩展库,我们同样借鉴上面的分类和介绍方法,看看crypto扩展库中都有哪些有价值的实用密码学包。

4 golang.org/x/crypto扩展库

我们还是从哈希函数开始介绍。

4.1 哈希函数

4.1.1 blake2b和blake2s

  • 功能:实现BLAKE2b和BLAKE2s哈希函数。BLAKE2是一种加密哈希函数,由Jean-Philippe Aumasson、Samuel Neves、Zooko Wilcox-O’Hearn和Christian Winnerlein设计,旨在替代MD5和SHA-1等旧的哈希函数。BLAKE2有两种主要变体:BLAKE2b和BLAKE2s。
  • 用途:生成高速、安全的哈希值。
  • 示例:
import "golang.org/x/crypto/blake2b"
hash := blake2b.Sum256([]byte("hello world"))
  • 使用建议:推荐使用,BLAKE2提供了比MD5和SHA-1更高的安全性,同时保持与SHA-2和SHA-3相当的强度,安全性高且速度快。

4.1.2 md4

  • 功能:实现MD4(Message Digest Algorithm 4)哈希算法
  • 用途:生成128位哈希值
  • 示例:
import "golang.org/x/crypto/md4"
h := md4.New()
h.Write([]byte("hello world"))
hash := h.Sum(nil)
  • 使用建议:不推荐用于安全相关用途,MD4已被证明不安全,容易受到碰撞攻击和其他类型的攻击。已经被更安全的哈希函数所取代,如SHA-2和SHA-3等。

4.1.3 ripemd160

  • 功能:实现RIPEMD-160(RACE Integrity Primitives Evaluation Message Digest 160)哈希算法。
  • 用途:生成160位哈希值
  • 示例:
import "golang.org/x/crypto/ripemd160"
h := ripemd160.New()
h.Write([]byte("hello world"))
hash := h.Sum(nil)
  • 使用建议:RIPEMD-160提供了比MD5和SHA-1更高的安全性,尽管它不像SHA-2和SHA-3那样被广泛研究和使用。但它仍然在某些特定场景(如比特币地址生成)中使用,但一般情况下推荐使用更现代的哈希函数(如SHA-256和SHA-512)。

4.1.4 sha3

  • 功能:实现SHA-3(Secure Hash Algorithm 3)哈希算法族。SHA-3是由美国国家标准与技术研究院(NIST)在2015年发布的一种加密哈希函数,作为SHA-2的后继者。SHA-3的设计基于Keccak算法,由Guido Bertoni、Joan Daemen、Michaël Peeters和Gilles Van Assche开发。
  • 用途:生成不同长度的哈希值。SHA-3包括多种变体,如SHA3-224、SHA3-256、SHA3-384和SHA3-512,分别生成224位、256位、384位和512位的哈希值。
  • 示例:
import "golang.org/x/crypto/sha3"
hash := sha3.Sum256([]byte("hello world"))
  • 使用建议:强烈推荐使用,是最新的NIST标准哈希函数。

4.2 加密和解密

4.2.1 blowfish

  • 功能:实现Blowfish(设计者Bruce Schneier)加密算法
  • 用途:数据的对称加密和解密
  • 示例:
import "golang.org/x/crypto/blowfish"
cipher, _ := blowfish.NewCipher([]byte("key"))
  • 使用建议:不推荐用于新系统,其密钥长度上限为448位,不如更现代的算法安全,建议使用AES。

4.2.2 cast5

  • 功能:实现CAST5(又名CAST-128)加密算法
  • 用途:数据对称加密和解密
  • 示例:
import "golang.org/x/crypto/cast5"
cipher, _ := cast5.NewCipher([]byte("16-byte key"))
  • 使用建议:不推荐用于新系统,建议使用AES。

4.2.3 chacha20

  • 功能:实现ChaCha20流加密算法(ChaCha20 stream cipher)
  • 用途:流数据的对称加密和解密
  • 示例:
import "golang.org/x/crypto/chacha20"
cipher, _ := chacha20.NewUnauthenticatedCipher(key, nonce)
  • 使用建议:推荐使用,特别是在移动设备上性能优于AES。它被广泛用于各种安全协议和应用中,包括TLS(Transport Layer Security)、SSH(Secure Shell)和QUIC(Quick UDP Internet Connections)等。

4.2.4 salsa20

  • 功能:实现Salsa20流加密算法(Salsa20 stream cipher)
  • 用途:流数据的对称加密和解密
  • 示例:
import "golang.org/x/crypto/salsa20"
salsa20.XORKeyStream(dst, src, nonce, key)
  • 使用建议:推荐使用,但ChaCha20可能因其性能优势和更广泛的标准支持而成为更受欢迎的选择。

4.2.4 tea

  • 功能:实现TEA(Tiny Encryption Algorithm)加密算法
  • 用途:轻量级数据加密
  • 示例:
import "golang.org/x/crypto/tea"
cipher, _ := tea.NewCipher([]byte("16-byte key"))
  • 使用建议:尽管TEA算法在过去被认为是安全的,但它已经出现了一些已知的安全漏洞,如密钥相关攻击和差分攻击。因此,TEA算法可能不适合需要高安全性的应用。不推荐将它用于新系统,建议使用AES。

4.2.5 twofish

  • 功能:实现Twofish(Twofish block cipher)加密算法
  • 用途:数据对称加密和解密
  • 示例:
import "golang.org/x/crypto/twofish"
cipher, _ := twofish.NewCipher([]byte("16, 24, or 32 byte key"))
  • 使用建议:不推荐将它用于新系统,建议使用AES。

4.2.6 xtea

  • 功能:实现XTEA(eXtended Tiny Encryption Algorithm)加密算法
  • 用途:轻量级对称数据加密
  • 示例:
import "golang.org/x/crypto/xtea"
cipher, _ := xtea.NewCipher([]byte("16-byte key"))
  • 使用建议:尽管XTEA修复了TEA的一些安全漏洞,但它仍然可能存在其他安全问题,特别是在面对现代计算能力和攻击技术时。因此,不推荐用于新系统,建议使用AES。

4.2.7 xts

  • 功能:实现XTS (XEX-based tweaked-codebook mode with ciphertext stealing) 模式
  • 用途:是一种块加密的标准操作模式,主要用于全磁盘加密
  • 示例:
import "golang.org/x/crypto/xts"
cipher, _ := xts.NewCipher(aes.NewCipher, []byte("32-byte key"))
  • 使用建议:在全磁盘加密场景,即需要对存储设备进行加密的应用中推荐使用。

4.3 认证加密

4.3.1 chacha20poly1305

  • 功能:实现ChaCha20-Poly1305(ChaCha20流加密算法和Poly1305消息认证码) AEAD(认证加密与关联数据)。
  • 用途:提供加密和认证的组合
  • 示例:
import "golang.org/x/crypto/chacha20poly1305"
aead, _ := chacha20poly1305.New(key)
  • 使用建议:ChaCha20-Poly1305是一个高效且安全的组合加密算法,在许多现代安全应用中被推荐使用。这里也强烈推荐使用,提供了高安全性和高性能。

4.4 密钥派生和密码哈希

4.4.1 argon2

  • 功能:实现Argon2(Argon2 memory-hard key derivation function)密码哈希算法
  • 用途:安全地存储密码
  • 示例:
import "golang.org/x/crypto/argon2"
hash := argon2.IDKey([]byte("password"), salt, 1, 64*1024, 4, 32)
  • 使用建议:强烈推荐使用,是最新的密码哈希标准。

4.4.2 bcrypt

  • 功能:实现bcrypt(Blowfish-based password hashing function)密码哈希算法
  • 用途:安全地存储密码
  • 示例:
import "golang.org/x/crypto/bcrypt"
hash, _ := bcrypt.GenerateFromPassword([]byte("password"), bcrypt.DefaultCost)
  • 使用建议:推荐使用,广泛应用于密码存储

4.4.3 hkdf

  • 功能:实现HMAC-based Key Derivation Function (HKDF)
  • 用途:HKDF是基于HMAC(Hash-based Message Authentication Code)的一种变体,专门用于从较短的输入密钥材料(如共享密钥或密码)派生出更长的、安全的密钥。
  • 示例:
import "golang.org/x/crypto/hkdf"
hkdf := hkdf.New(sha256.New, secret, salt, info)
  • 使用建议:推荐使用,是标准的密钥派生函数。

4.4.4 pbkdf2

  • 功能:实现PBKDF2(Password-Based Key Derivation Function 2, 基于密码的密钥派生函数2)
  • 用途:从密码派生密钥
  • 示例:
import "golang.org/x/crypto/pbkdf2"
dk := pbkdf2.Key([]byte("password"), salt, 4096, 32, sha1.New)
  • 使用建议:对于需要高安全性和抵抗暴力破解攻击的应用,PBKDF2是一个很好的选择。然而,对于更现代的应用,特别是那些对安全性有极高要求的应用,可能更推荐使用更现代的密码哈希算法,如Argon2。

4.4.5 scrypt

  • 功能:实现scrypt(Scrypt key derivation function)密钥派生函数
  • 用途:从密码派生密钥,特别适合抵抗硬件暴力破解
  • 示例:
import "golang.org/x/crypto/scrypt"
dk, _ := scrypt.Key([]byte("password"), salt, 32768, 8, 1, 32)

4.5 公钥密码学

4.5.1 bn256

  • 功能:实现256位Barreto-Naehrig曲线
  • 用途:支持双线性对运算,用于某些高级密码协议
  • 示例:
import "golang.org/x/crypto/bn256"
g1 := new(bn256.G1).ScalarBaseMult(k)
  • 使用建议:该包已作废并冻结,不推荐使用。github.com/cloudflare/bn256有更完整的实现,但对于新的应用,特别是那些对安全性有极高要求的应用,不推荐使用bn256。

4.5.2 nacl

  • 功能:提供NaCl(Networking and Cryptography library)的Go实现
  • 用途:NaCl主要用于需要高效加密和安全通信的应用。它提供了各种加密原语,包括对称加密、公钥加密、哈希函数、消息认证码(MAC)和密钥协商协议等。
  • 示例:
import "golang.org/x/crypto/nacl/box"
publicKey, privateKey, _ := box.GenerateKey(rand.Reader)
  • 使用建议:推荐使用,提供了易用的高级加密接口

4.6 协议和标准

4.6.1 acme

  • 功能:实现ACME(Automatic Certificate Management Environment)协议,该协议旨在自动化证书的颁发、更新和管理。它允许服务器自动请求和接收TLS/SSL证书,而无需人工干预。
  • 用途:自动化证书管理,如Let’s Encrypt
  • 示例:使用较复杂,通常通过更高级的库如golang.org/x/crypto/acme/autocert使用,鉴于篇幅,这里就不贴代码了。
  • 使用建议:在需要自动化证书管理的场景中推荐使用

4.6.2 ocsp

  • 功能:实现在线证书状态协议(OCSP, Online Certificate Status Protocol),该协议提供了一种实时查询数字证书状态的方法。它允许客户端在建立安全连接之前,向证书颁发机构(CA)查询特定证书的有效性。
  • 用途:检查X.509数字证书的撤销状态
  • 示例:
import "golang.org/x/crypto/ocsp"
resp, _ := ocsp.ParseResponse(responseBytes, issuer)
  • 使用建议:在需要证书状态检查的应用中推荐使用

4.6.3 openpgp

  • 功能:实现OpenPGP(Open Pretty Good Privacy)标准。OpenPGP是一种加密标准,旨在提供数据加密和解密、数字签名和数据完整性保护。
  • 用途:主要用于保护电子邮件通信、文件存储和数据传输的安全。它支持对称加密、公钥加密、哈希函数和消息认证码(MAC),以及生成和验证数字签名。
  • 示例:
import "golang.org/x/crypto/openpgp"
entity, _ := openpgp.NewEntity("name", "comment", "email", nil)
  • 使用建议:OpenPGP是一个强大、灵活和安全的加密标准,被广泛用于各种安全协议和应用中,包括电子邮件加密、文件加密和数据传输加密。在许多现代安全应用中被推荐使用。

4.6.4 otr

  • 功能:实现Off-The-Record Messaging (OTR) 离线消息传递协议
  • 用途:提供即时通讯场景的端到端加密,确保通信内容只能被预期的接收者阅读,而不会被第三方窃听或篡改。
  • 示例:(使用较复杂,通常需要结合具体的即时通讯应用)
  • 使用建议:在开发加密即时通讯应用时可以考虑使用

4.6.5 pkcs12

  • 功能:实现PKCS#12标准(Public-Key Cryptography Standards #12),PKCS#12是由RSA Laboratories设计的,旨在定义一种标准格式,用于存储和传输私钥、公钥和证书链。PKCS#12文件通常以.p12或.pfx扩展名结尾。
  • 用途:存储和传输服务器证书、中间证书和私钥
  • 示例:
import "golang.org/x/crypto/pkcs12"
blocks, _ := pkcs12.ToPEM(pfxData, "password")
  • 使用建议:PKCS#12是一个强大、安全和标准化的密钥和证书存储格式,在需要安全存储和传输加密密钥和证书的应用中被推荐使用。不过该包已经冻结,如需要,可考虑software.sslmate.com/src/go-pkcs12的实现(github.com/SSLMate/go-pkcs12)。

4.6.6 ssh

  • 功能:实现SSH客户端和服务器
  • 用途:提供安全的远程登录和其他安全网络服务
  • 示例:
import "golang.org/x/crypto/ssh"
config := &ssh.ClientConfig{User: "user", Auth: []ssh.AuthMethod{ssh.Password("password")}}
  • 使用建议:强烈推荐用于实现SSH功能

4.7 其他

4.7.1 poly1305

  • 功能:实现Poly1305消息认证码。Poly1305是一种高速的消息认证码(MAC)算法, 通常与ChaCha20流加密算法结合使用,形成ChaCha20-Poly1305组合,用于提供加密和消息认证的完整解决方案。
  • 用途:用于消息认证,确保消息在传输过程中的完整性和真实性,未被篡改。
  • 示例:
import "golang.org/x/crypto/poly1305"
var key [32]byte
var out [16]byte
poly1305.Sum(&out, msg, &key)
  • 使用建议:这个包的实现已作废,推荐使用golang.org/x/crypto/chacha20poly1305

5. Go密码学库的现状与后续方向

Gotime在2023年末和今年年初对Go密码学库的前负责人Filippo Valsorda和现负责人Roland Shoemaker进行了三期访谈(见参考资料),通过这三次访谈我们大约可以梳理出Go密码学库的现状与后续方向:

  • RSA后端实现的改进,提高了安全性和性能。
  • 引入godebug机制,允许在不破坏兼容性的情况下逐步引入新的安全改进。
  • 正在考虑对一些密码学包进行v2版本的设计,以提供更高级和更易用的API。
  • 正在逐步弃用一些不安全的算法,如SHA1和MD5。
  • 简化配置选项,减少用户需要做的选择,提供更多默认安全设置。
  • 正在将golang.org/x/crypto中的重要包移入标准库,以减少混淆,包括继TLS之后的另外一个重要协议包ssh库。
  • 使用BoringSSL的BoGo测试套件来全面测试Go的TLS实现。
  • Go密码学库正在实现这些新的后量子密码算法,但目前还没有完全集成到标准库中。

总的来说,Go密码学库(包括golang.org/x/crypto)正在积极发展和改进,同时也在为后量子密码学时代做准备。虽然后量子算法的完全集成和广泛应用还需要一段时间,但Go团队正在积极跟进这一领域的发展,努力在保持兼容性的同时提升安全性和性能。

6. 小结

在这篇文章中,我们对Go生态中密码学功能的核心:Go crypto库(包括标准库crypto相关包以及golang.org/x/crypto相关包)进行了全面的了解,包括两者的关系、整体结构设计原则以及每个库的子包概览。

我们看到:Go crypto库以其安全性、全面性、易用性、高性能以及与Go生态系统的高度集成而著称。它不仅涵盖了广泛的加密算法和协议,还通过统一且直观的API降低了使用门槛。

相信通过上述的了解,大家都已经理解了Go crypto库的架构与设计思想,并建立起了一张crypto库的“地图”。按照这幅图的指示,大家可以根据具体需求,快速找到合适的密码学包,并利用这些包构建安全可靠的Go应用。

7. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats