标签 runtime 下的文章

Go 1.25中值得关注的几个变化

本文永久链接 – https://tonybai.com/2025/08/15/some-changes-in-go-1-25

大家好,我是Tony Bai。

北京时间2025年8月13日,Go 团队如期发布了 Go 语言的最新大版本——Go 1.25。按照惯例,每次 Go 大版本发布时,我都会撰写一篇“Go 1.x 中值得关注的几个变化”的文章。自 2014 年的 Go 1.4 版本起,这一系列文章已经伴随大家走过了十一个年头。

不过,随着我在版本冻结前推出的“Go 1.x 新特性前瞻”系列,以及对该大版本可能加入特性的一些独立的解读文章,本系列文章的形式也在不断演变。本文将不再对每个特性进行细致入微的分析,因为这些深度内容大多已在之前的《Go 1.25 新特性前瞻》一文中详细讨论过。本文将更聚焦于提炼核心亮点,并分享一些我的思考。

好了,言归正传,我们来看看Go 1.25带来了哪些惊喜!

语言变化:兼容性基石上的精雕细琢

正如 Go 一贯所做的,新版 Go 1.25 继续遵循 Go1 的兼容性规范。最令 Gopher 们安心的一点是:Go 1.25 没有引入任何影响现有 Go 程序的语言级变更

There are no languages changes that affect Go programs in Go 1.25.

这种对稳定性的极致追求,是 Go 成为生产环境首选语言之一的重要原因。

尽管语法层面波澜不惊,但语言规范内部却进行了一次“大扫除”——移除了“core types”的概念。这一变化虽然对日常编码无直接影响,但它简化了语言规范,为未来泛型可能的演进铺平了道路,体现了 Go 团队在设计层面的严谨与远见。关于此变化的深度解读,可以回顾我之前的文章《Go 1.25 规范大扫除:移除“Core Types”,为更灵活的泛型铺路》。

编译器与运行时:看不见的性能飞跃

如果说 Go 1.24 的运行时核心是优化 map,那么 Go 1.25 的灵魂则在于让 Go 程序更“懂”其运行环境,并对 GC 进行了大刀阔斧的革新。

容器感知型 GOMAXPROCS

这无疑是 Go 1.25 最具影响力的变化之一。在容器化部署已成事实标准的今天,Go 1.25 的运行时终于具备了 cgroup 感知能力。在 Linux 系统上,它会默认根据容器的 CPU limit 来设置 GOMAXPROCS,并能动态适应 limit 的变化。

这意味着,只需升级到 Go 1.25,你的 Go 应用在 K8s 等环境中的 CPU 资源使用将变得更加智能和高效,告别了过去因 GOMAXPROCS 默认值不当而导致的资源浪费或性能瓶颈。更多细节,请参阅我的文章《Go 1.25 新提案:GOMAXPROCS 默认值将迎 Cgroup 感知能力,终结容器性能噩梦?》。

实验性的 Green Tea GC

Go 1.25 迈出了 GC 优化的重要一步,引入了一个新的实验性垃圾收集器。通过设置 GOEXPERIMENT=greenteagc 即可在构建时启用。

A new garbage collector is now available as an experiment. This garbage collector’s design improves the performance of marking and scanning small objects through better locality and CPU scalability.

据官方透露,这个新 GC 有望为真实世界的程序带来 10%—40% 的 GC 开销降低。知名go开发者Josh Baker(@tidwall)在Go 1.25发布正式版后,在X上分享了自己使用go 1.25新gc(绿茶)后的结果,他开源的实时地理空间和地理围栏项目tile38的GC开销下降35%:

这是一个巨大的性能红利,尤其对于重度依赖GC的内存密集型应用。虽然它仍在实验阶段,但其展现的潜力已足够令人兴奋。对 Green Tea GC 设计原理感兴趣的朋友,可以阅读我的文章《Go 新垃圾回收器登场:Green Tea GC 如何通过内存感知显著降低 CPU 开销?》。

此外,Go 1.25 还修复了一个存在于 Go 1.21 至 1.24 版本中可能导致 nil pointer 检查被错误延迟的编译器 bug,并默认启用了 DWARFv5 调试信息,进一步缩小了二进制文件体积并加快了链接速度,对DWARFv5感兴趣的小伙伴儿可以重温一下我之前的《Go 1.25链接器提速、执行文件瘦身:DWARF 5调试信息格式升级终落地》一文,了解详情。

工具链:效率与可靠性的双重提升

强大的工具链是 Go 生产力的核心保障。Go 1.25 在此基础上继续添砖加瓦。

go.mod 新增 ignore 指令

对于大型 Monorepo 项目,go.mod 新增的 ignore 指令是一个福音。它允许你指定 Go 命令在匹配包模式时应忽略的目录,从而在不影响模块依赖的前提下,有效提升大型、混合语言仓库中的构建与扫描效率。关于此特性的详细用法,请见《Go 工具链进化:go.mod 新增 ignore 指令,破解混合项目构建难题》。

支持仓库子目录作为模块根路径

一个长期困扰 Monorepo 管理者和自定义 vanity import 用户的难题在 Go 1.25 中也得到了解决。Go 命令现在支持在解析 go-import meta 标签时,通过新增的 subdir 字段,将 Git 仓库中的子目录指定为模块的根。

这意味着,你可以轻松地将 github.com/my-org/my-repo/foo/bar 目录映射为模块路径 my.domain/bar,而无需复杂的代理或目录结构调整。这个看似微小但备受期待的改进,极大地提升了 Go 模块在复杂项目结构中的灵活性。想了解其来龙去脉和具体配置方法,可以参考我的文章《千呼万唤始出来?Go 1.25解决Git仓库子目录作为模块根路径难题》。

go doc -http:即开即用的本地文档

这是一个虽小但美的改进。新的 go doc -http 选项可以快速启动一个本地文档服务器,并在浏览器中直接打开指定对象的文档。对于习惯于离线工作的开发者来说,这极大地提升了查阅文档的便捷性。详细介绍见《重拾精髓:go doc -http 让离线包文档浏览更便捷》。

go vet 新增分析器

go vet 变得更加智能,新增了两个实用的分析器:

  • waitgroup:检查 sync.WaitGroup.Add 的调用位置是否错误(例如在 goroutine 内部调用)。
  • hostport:诊断不兼容 IPv6 的地址拼接方式 fmt.Sprintf(“%s:%d”, host, port),并建议使用 net.JoinHostPort。

这些静态检查能帮助我们在编码阶段就扼杀掉一批常见的并发和网络编程错误。

标准库:功能毕业与实验探索

标准库的演进是每个 Go 版本的重要看点。

testing/synctest 正式毕业

在 Go 1.24 中以实验特性登场的 testing/synctest 包,在 Go 1.25 中正式毕业,成为标准库的一员。它为并发代码测试提供了前所未有的利器,通过虚拟化时间和调度,让编写可靠、无 flakiness 的并发测试成为可能。我曾撰写过一个征服 Go 并发测试的微专栏,系统地介绍了该包的设计与实践,欢迎大家订阅学习。

encoding/json/v2 开启实验

这是 Go 1.25 最受关注的实验性特性之一!通过 GOEXPERIMENT=jsonv2 环境变量,我们可以启用一个全新的、高性能的 JSON 实现。

Go 1.25 includes a new, experimental JSON implementation… The new implementation performs substantially better than the existing one under many scenarios.

根据官方说明,json/v2 在解码性能上相较于 v1 有了“巨大”的提升。这是 Go 社区多年来对 encoding/json 包性能诟病的一次正面回应。虽然其 API 仍在演进中,但它预示着 Go 的 JSON 处理能力未来将达到新的高度。对 v2 的初探,可以参考我的文章《手把手带你玩转 GOEXPERIMENT=jsonv2:Go 下一代 JSON 库初探》。jsonv2支持真流式编解码的方法,也可以参考《Go json/v2实战:告别内存爆炸,掌握真流式Marshal和Unmarshal》这篇文章。

sync.WaitGroup.Go:并发模式更便捷

Go 语言的并发编程哲学之一就是让事情保持简单。Go 1.25 在 sync.WaitGroup 上新增的 Go 方法,正是这一哲学的体现。

这个新方法旨在消除 wg.Add(1) 和 defer wg.Done() 这一对经典的样板代码。现在,你可以直接调用 wg.Go(func() { … }) 来启动一个被 WaitGroup 追踪的 goroutine,Add 和 Done 的调用由 Go 方法在内部自动处理。这不仅让代码更简洁,也从根本上避免了因忘记调用 Add 或 Done 而导致的常见并发错误。

关于这个便捷方法的来龙去脉和设计思考,可以回顾我之前的文章《WaitGroup.Go 要来了?Go 官方提案或让你告别 Add 和 Done 样板代码》。

其他:Trace Flight Recorder

最后,我想特别提一下 runtime/trace 包新增的 Flight Recorder API。传统的运行时 trace 功能强大但开销巨大,不适合在生产环境中持续开启。

trace.FlightRecorder 提供了一种轻量级的解决方案:它将 trace 数据持续记录到一个内存中的环形缓冲区。当程序中发生某个重要事件(如一次罕见的错误)时,我们可以调用 FlightRecorder.WriteTo 将最近一段时间的 trace 数据快照保存到文件。这种“事后捕获”的模式,使得在生产环境中调试偶发、疑难的性能或调度问题成为可能,是 Go 诊断能力的一次重大升级。更多详情可以参阅《Go pprof 迎来重大革新:v2 提案详解,告别默认注册,拥抱飞行记录器》。

小结

Go 1.25 的发布,再次彰显了 Go 语言务实求进的核心哲学。它没有追求华而不实的语法糖,而是将精力聚焦于那些能为广大开发者带来“无形收益”的领域:更智能的运行时、更快的 GC、更可靠的编译器、更高效的工具链

这些看似底层的改进,正是 Go 作为一门“生产力语言”的价值所在。它让开发者可以专注于业务逻辑,而将复杂的系统优化和环境适配,放心地交给 Go 语言自身。

我鼓励大家尽快将 Go 1.25 应用到自己的项目中,亲自感受这些变化带来的提升。Go 的旅程,仍在继续,让我们共同期待它在未来创造更多的可能。

感谢阅读!

如果这篇文章让你对 Go 1.25 新特性有了新的认识,请帮忙 点赞分享,让更多朋友一起学习和进步!


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

为何Go语言迟迟未能拥抱 io_uring?揭秘集成的三大核心困境

本文永久链接 – https://tonybai.com/2025/08/11/why-go-not-embrace-iouring

大家好,我是Tony Bai。

在 Linux I/O 的世界里,io_uring 如同划破夜空的流星,被誉为“终极接口”。它承诺以无与伦比的效率,为数据密集型应用带来革命性的性能提升。正如高性能数据库 ScyllaDB 在其官方博文中所展示的,io_uring 能够将系统性能推向新的高峰。

然而,一个令人费解的问题摆在了所有 Go 开发者面前:作为云原生infra和并发编程的标杆,Go 语言为何对这颗唾手可得的“性能银弹”表现得如此审慎,甚至迟迟未能将其拥抱入标准库的怀抱?一场在 Go 官方仓库持续了五年之久的 Issue 讨论(#31908),为我们揭开了这层神秘的面纱。这并非简单的技术取舍,而是 Go 在其设计哲学、工程现实与安全红线之间进行反复权衡的结果。本文将深入这场讨论,为您揭秘阻碍 io_uring 在 Go 中落地的三大核心困境。

io_uring:一场 I/O 模型的革命

要理解这场争论,我们首先需要明白 io_uring 究竟是什么,以及它为何具有革命性。

在 io_uring 出现之前,Linux 上最高效的 I/O 模型是 epoll。epoll 采用的是一种“拉(pull)”模型:应用程序通过一次 epoll_wait 系统调用来询问内核:“有我关心的文件描述符准备好进行 I/O 了吗?”。内核响应后,应用程序需要再为每个就绪的描述符分别发起 read 或 write 系统调用。这意味着,处理 N 个 I/O 事件至少需要 N+1 次系统调用

而 io_uring 则彻底改变了游戏规则。它在内核与用户空间之间建立了两个共享内存环形缓冲区:提交队列(Submission Queue, SQ)完成队列(Completion Queue, CQ)

其工作流程如下:

  1. 提交请求: 应用程序将一个或多个 I/O 请求(如读、写、连接等)作为条目(SQE)放入提交队列中。这仅仅是内存操作,几乎没有开销
  2. 通知内核: 应用通过一次 io_uring_enter 系统调用,通知内核“请处理队列中的所有请求”。在特定模式(SQPOLL)下,这个系统调用甚至可以被省略。
  3. 内核处理: 内核从提交队列中批量取走所有请求,并异步地执行它们。
  4. 返回结果: 内核将每个操作的结果作为一个条目(CQE)放入完成队列。这同样只是内存操作。
  5. 应用收获: 应用程序直接从完成队列中读取结果,无需为每个结果都发起一次系统调用。

这种模式的优势是颠覆性的:它将 N+1 次系统调用压缩为 1 次甚至 0 次,极大地降低了上下文切换的开销,并且首次为 Linux 带来了真正意义上的、无需 O_DIRECT 标志的异步文件 I/O

最初的希望:一剂治愈 Go I/O“顽疾”的良药

讨论伊始,Go 社区对 io_uring 寄予厚望,期待它能一举解决 Go 在 I/O 领域的两大历史痛点:

  1. 真正的异步文件 I/O: Go 的网络 I/O 基于 epoll 实现了非阻塞,但文件 I/O 本质上是阻塞的。为了避免阻塞系统线程,Go 运行时不得不维护一个线程池来处理文件操作。正如社区所期待的,io_uring 最大的吸引力在于“移除对文件 I/O 线程池的需求”,让文件 I/O 也能享受与网络 I/O 同等的高效与优雅。
  2. 极致的网络性能: 对于高并发服务器,io_uring 通过将多个 read/write 操作打包成一次系统调用,能显著降低内核态与用户态切换的开销,这在“熔断”和“幽灵”漏洞导致 syscall 成本飙升的后时代尤为重要。

然而,Go 核心团队很快就为这股热情泼上了一盆“冷水”。

核心困境一:运行时模型的“哲学冲突”

这是阻碍 io_uring 集成最根本、最核心的障碍。Go 的成功很大程度上归功于其简洁的并发模型——goroutine,以及对开发者完全透明的调度机制。但 io_uring 的工作模式,与 Go 运行时的核心哲学存在着深刻的冲突。

冲突的焦点在于“透明性”。Ian Lance Taylor 多次强调,问题不在于 io_uring 能否在 Go 中使用,而在于能否“透明地”将其融入现有的 os 和 net 包,而不破坏 Go 开发者早已习惯的 API 和心智模型。

io_uring 的性能优势源于批处理。但 Go 的标准库 API,如 net.Conn.Read(),是一个独立的、阻塞式的调用。Go 用户习惯于在独立的 goroutine 中处理独立的连接。如何将这些分散的独立 I/O 请求,在用户无感知的情况下,“透明地”收集起来,打包成批?这几乎是一个无解的难题。

社区也提出了“每个 P (Processor) 一个 io_uring 环”的设想,但 Ian 指出这会引入极高的复杂性,包括环的争用、空闲 P 的等待与唤醒、P 与 M 切换时的状态管理等。正如一些社区成员所总结的,io_uring 需要一种全新的 I/O 模式,而这与 Go 现有网络模型的模式完全不同。强行“透明”集成,无异于“在不破坏现有 API 的情况下进行不必要的破坏”。

核心困境二:现实世界的“安全红线”

如果说运行时模型的冲突是理论上的“天堑”,那么安全问题则是实践中不可逾越的“红线”。

在 2024 年初,社区成员 jakebailey 抛出了一个重磅消息:出于安全考虑,Docker 默认的 seccomp 配置文件已经禁用了 io_uring

引用自 Docker 的 commit 信息: “安全专家普遍认为 io_uring 是不安全的。事实上,Google ChromeOS 和 Android 已经关闭了它,所有 Google 生产服务器也关闭了它。”

这个消息对标准库集成而言几乎是致命一击。Go 程序最常见的部署环境就是容器。一个不被“普遍情况”支持的特性,无论其性能多么优越,都难以成为Go运行时和标准库的基石。

核心困境三:追赶一个“移动的目标”

在这场长达五年的讨论中,io_uring 自身也在飞速进化。其作者Jens Axboe 甚至亲自下场,解答了 Go 团队早期的疑虑,例如移除了并发数限制、解决了事件丢失问题等。

但这恰恰揭示了第三重困境:要集成一个仍在高速演进、API 不断变化的底层接口,本身就充满了风险和不确定性。标准库追求的是极致的稳定性和向后兼容性。过早地依赖一个“移动的目标”,可能会带来持续的维护负担和潜在的破坏性变更。对于一个需要支持多个内核版本的语言运行时来说,这种复杂性是难以承受的。

小结:审慎的巨人与退潮的社区热情

io_uring 未能在 Go中落地,并非因为 Go 团队忽视性能,而是其成熟与审慎的体现。三大核心困境层层递进,揭示了其迟迟未能拥抱 io_uring 的深层原因:哲学上的范式冲突、现实中的安全红线、以及工程上的稳定性质疑。

然而,现实比理论更加残酷。在讨论初期,Go 社区曾涌现出一批充满激情的用户层 io_uring 库,如 giouring、go-uring 等,它们是开发者们探索新大陆的先锋。但时至 2025 年,我们观察到一个令人沮丧的趋势:这些曾经的追星项目大多已陷入沉寂,更新寥寥,星光黯淡。

与之形成鲜明对比的是,Rust 的 tokio-uring 库依然保持着旺盛的生命力,社区活跃,迭代频繁。这似乎在暗示,问题不仅在于 io_uring 本身,更在于它与特定语言运行时模型的“契合度”。Go 运行时的 G-P-M 调度模型和它所倡导的编程范式,使得社区自发的集成尝试也步履维艰,最终热情退潮。

这是否意味着 Go 与 io_uring 将永远无缘?或许未来之路有二:一是等待 io_uring 自身和其生态环境(尤其是安全方面)完全成熟;二是 Go 也许可能会引入一套全新的、非透明的、专为高性能 I/O 设计的新标准库包。

在此之前,Go 运行时可能会选择先挖掘 epoll 的全部潜力。这场长达五年的讨论,最终为我们留下了一个深刻的启示:技术的采纳从来不是一场单纯的性能赛跑,它是一场包含了设计哲学、生态现实与工程智慧的复杂博弈。

资料链接:

  • https://github.com/golang/go/issues/31908
  • https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/

关注io_uring在Linux kernel内核演进的小伙伴儿们,可以关注io-uring.vger.kernel.org archive mirror这个页面,或io_uring作者Jens Axboe的liburing wiki


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 AI原生开发工作流实战 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats