标签 Package 下的文章

Go语言的“黑暗角落”:盘点学习Go语言时遇到的那些陷阱[译](第一部分)

本文翻译自Rytis Bieliunas的文章《Darker Corners of Go》

译注:若干年前,Kyle Quest曾发过一篇名为“50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs”的文章,仿效著名的《C Traps and Pitfalls》编写了50条Go语言的陷阱与缺陷,一时在Go社区广为流传。而本文是又一篇较为系统总结Go陷阱的文章,不同于50 Shades of Go的按初中高级陷阱的分类方式,本文是按类别对Go陷阱做讲解。

0. 简介

这是什么

当初学习Go的时候,我只是看了一些入门书和Go语言规范。当时,我已经掌握了其他几种编程语言,然而感觉自己对Go的了解还不够,无法进行实际工作。我觉得自己对Go世界的运作方式了解地还不够深入,我可能需要趟过一些Go陷阱后才会建立起使用Go的信心。

我是对的

虽然简单是Go语言设计哲学的核心,但当你深入使用Go时,你就会发现Go语言在用它颇具创意的方式啪啪打你的脸。

由于现在我已经用Go进行了几年的生产应用,在趟过很多“坑”之后,我想我应该将这些“遇坑与填坑”的情况整理出来献给那些Go语言的新手同学们。

我的目标是在一篇文章中收集Go中各种可能会让新开发者感到惊讶的东西,也许会对Go中比较特别的功能有所启发。我希望这能为读者节省大量的Google搜索和调试时间,并可能避免一些昂贵的错误。

我认为这篇文章对于那些至少已经知道Go语法的人来说是最有用的。如果你是一个中级或有经验的程序员,已经懂得其他编程语言,并希望学习Go,那就最好不过了。

如果你发现错误或者我没有包含你最喜欢的Go surprise,请告诉我:rytbiel@gmail.com。

非常感谢Vytautas Shaltenis的帮助,让这篇文章变得更好。

1. 代码格式化(Code formatting)

1) gofmt

在Go中,gofmt工具将许多预定好的代码格式“强加”于你的代码。gofmt对源文件进行机械性的更改,例如对包导入声明进行排序和对代码应用缩进等。这是自从切片面包诞生以来最好的事情,因为它可以节省开发人员大量无关紧要的争论所消耗的工作量。例如,它使用制表符来缩进,使用空格来对齐– 对代码风格的争论到此为止。

您可以完全不使用gofmt工具,但如果使用它,你却无法将对其所实施的代码格式化样式进行配置。该工具完全没有提供任何代码格式化选项,这才是重点。提供一种“足够好”的统一代码格式样式,它可能是没人喜欢的样式,但是Go开发人员认为统一胜于完美

共享样式和自动代码格式化的好处包括:

  • 无需花费任何时间在代码审查上来解决格式问题。
  • 它可以使您免于与一起工作的同事争论大括号到底放在哪里,缩进使用制表符还是空格。你所有的激情和精力都可以得到更有效的利用。
  • 代码更易于编写:像代码格式这样的次要工作已经有工具帮你完成。
  • 代码更容易阅读:您无需从心理上解析你不熟悉的别人的代码格式。

大多数流行的IDE都具有Go插件,这些插件会在保存源文件时自动运行gofmt。

诸如goformat之类的第三方工具允许你在Go中使用自定义代码样式格式。但你真的希望那样做么?

2) 长代码行

Gofmt不会尝试为您分解很长的代码。有诸如golines之类的第三方工具可以做到这一点。

3) 大括号

在Go中,必须在行的末尾放置大括号。有趣的是,这不是gofmt强制执行的,而是Go词法分析器实现方式的副作用。有或没有gofmt,都不能将大括号放在新行上。

package main

// missing function body
func main()
// syntax error: unexpected semicolon or newline before {
{
}

// all good!
func main() {
}

4) 多行声明中的逗号

在初始化切片、数组、map或结构体时,Go要求在换行符前加逗号。在多种语言中都允许使用尾部逗号,并且在某些样式指南中鼓励使用逗号。在Go中,它们是强制性的。这样在重新排列行或添加新行时就无需修改不相关的行。这也意味着更少的代码审核差异噪声。

// all of these are OK
a := []int{1, 2}

b := []int{1, 2,}

c := []int{
    1,
    2}

d := []int{
    1,
    2,
}

// syntax error without trailing comma
e := []int{
    1,
    // syntax error: unexpected newline, expecting comma or }
    2
}

结构体也使用相同规则:

type s struct {
    One int
    Two int
}

f := s{
    One: 1,
    // syntax error: unexpected newline, expecting comma or }
    Two: 2
}

2. 包导入(Import)

1) 未使用的导入包

未使用导入包的Go程序无法编译。这是该语言的故意设定,因为导入包会降低编译器的速度。在大型程序中,未使用的导入包可能会对编译时间产生重大影响。

为了使编译器在开发过程中感到happy^_^,您可以通过以下方式引用该软件包:

package main

import (
    "fmt"
    "math"
)

// Reference unused package
var _ = math.Round 

func main() {
    fmt.Println("Hello")
}

2) goimports

更好的解决方案是使用goimports工具。goimports会为您删除未引用的导入包。更好的是,它尝试自动查找并添加缺失的包导入。

package main

import "math" // imported and not used: "math"

func main() {
    fmt.Println("Hello") // undefined: fmt
}

运行goimports之后:

./goimports main.go
package main

import "fmt"

func main() {
    fmt.Println("Hello")
}

大多数流行的IDE的Go插件在保存源文件时会自动运行goimports。

3) 下划线导入

以下划线方式导入包仅是出于对其副作用的依赖。这意味着它将创建程序包级变量并运行包的init函数

package package1

func package1Function() int {
    fmt.Println("Package 1 side-effect")
    return 1
}

var globalVariable = package1Function()

func init() {
    fmt.Println("Package 1 init side effect")
}

导入package1:

package package2

import _ package1

这将打印消息并初始化globalVariable:

Package 1 side-effect
Package 1 init side effect

多次导入一个包(例如,在主程序包以及在其主要引用的程序包中)只运行一次该包的init函数。

下划线导入在Go运行时库中有使用。例如,导入net/http/pprof调用其init函数,该函数公开HTTP端点,这些端点可以提供有关应用程序的调试信息:

import _ "net/http/pprof"

4) 点导入

点导入允许在不使用限定符的情况下访问导入包中的标识符:

package main

import (
    "fmt"
    . "math"
)

func main() {
    fmt.Println(Sin(3)) // references math.Sin
}

是否应从Go语言中完全删除点导入一直存在公开辩论。Go团队不建议在测试包以外的任何地方使用它们:

因为它使得程序可读性大大下降,我们很难知道一个Quux之类的名称是当前程序包中还是导入程序包中的顶层标识符 – https://golang.org/doc/faq

另外,如果您使用go-lint工具,那么在测试文件之外使用点导入时,它会显示警告,并且您无法轻易将其关闭。

Go团队建议在测试中使用点可以避免包的循环依赖:

// foo_test package tests for foo package
package foo_test

import (
    "bar/testutil" // also imports "foo"
    . "foo"
)

该测试文件不能成为foo包的一部分,因为它引用了bar/testutil,而bar/testutil又引用了foo并导致了循环依赖。

在这种情况下,首先要考虑的是,是否有一种更好的方法来构建可避免循环依赖的软件包。将bar/testutil使用的内容从foo移动到foo和bar/testutil都可以导入的第三个包可能更好,这样就可以将测试以正常方式写在foo包中。

如果重构没有意义,并且使用点导入将测试移至单独的程序包,则foo_test程序包至少可以假装为foo程序包的一部分。注意,它无法访问foo包的未导出类型和函数。

可以说,在域特定语言编程中,点导入是一个很好的用例。例如,Goa框架将其用于配置。如果没有点导入,它看起来不会很好:

package design

import . "goa.design/goa/v3/dsl"

// API describes the global properties of the API server.
var _ = API("calc", func() {
    Title("Calculator Service")
    Description("HTTP service for adding numbers, a goa teaser")
    Server("calc", func() {
        Host("localhost", func() { URI("http://localhost:8088") })
    })
})

3. 变量

1) 未使用的变量

带有未使用变量的Go程序无法编译:

如果存在未使用的变量,则可能表示有bug[…] Go拒绝使用未使用的变量或导入来编译程序,并且不会为了短期的便利性去换取更高的构建速度和程序的清晰性。- https://golang.org/doc/faq

该规则的例外是全局变量和函数参数:

package main

var unusedGlobal int // this is ok

func f1(unusedArg int) { // unused function arguments are also ok
    // error: a declared but not used
    a, b := 1,2
    // b is used here, but a is only assigned to, does not count as “used”
    a = b
}

2) 短变量声明

声明变量的简写形式仅在函数内部起作用:

package main

v1 := 1 // error: non-declaration statement outside function body
var v2 = 2 // this is ok

func main() {
    v3 := 3 // this is ok
    fmt.Println(v3)
}

设置结构体字段值时,它也不起作用:

package main

type myStruct struct {
    Field int
}

func main() {
    var s myStruct

    // error: non-name s.Field on the left side of :=
    s.Field, newVar := 1, 2 

    var newVar int
    s.Field, newVar = 1, 2 // this is actually ok
}

3) 变量遮蔽

令人遗憾的是,Go中允许使用变量遮蔽。您需要经常注意这一点,因为它可能导致难以发现的问题。发生这种情况是因为,为方便起见,如果至少有一个变量是新变量,Go允许使用短变量声明形式:

package main

import "fmt"

func main() {
    v1 := 1
    // v1 is not actually redeclared here, only gets a new value set
    v1, v2 := 2, 3
    fmt.Println(v1, v2) // prints 2, 3
}

但是,如果声明在另一个代码块内部,则它将声明一个新变量,从而可能导致严重的错误:

package main

import "fmt"

func main() {
    v1 := 1
    if v1 == 1 {
        v1, v2 := 2, 3
        fmt.Println(v1, v2) // prints 2, 3
    }
    fmt.Println(v1) // prints 1 !
}

一个更现实的示例,假设您有一个返回错误的函数:

package main

import (
    "errors"
    "fmt"
)

func func1() error {
   return nil
}

func errFunc1() (int, error) {
   return 1, errors.New("important error")
}

func returnsErr() error {
    err := func1()
    if err == nil {
        v1, err := errFunc1()
        if err != nil {
            fmt.Println(v1, err) // prints: 1 important error
        }
    }
    return err // this returns nil!
}

func main() {
    fmt.Println(returnsErr()) // prints nil
}

一种解决方案是不要在嵌套代码块内使用短变量声明:

func returnsErr() error {
    err := func1()
    var v1 int

    if err == nil {
        v1, err = errFunc1()
        if err != nil {
            fmt.Println(v1, err) // prints: 1 important error
        }
    }

    return err // returns "important error"
}

或者在上述示例的情况下,更好的方法是尽早退出:

func returnsErr() error {
    err := func1()
    if err != nil {
        return err
    }

    v1, err := errFunc1()
    if err != nil {
        fmt.Println(v1, err) // prints: 1 important error
        return err
    }

    return nil
}

也有可以提供帮助的工具。在go vet工具中曾有一个实验性的变量遮蔽检测,后来将其删除。在撰写本文时,这是您可以安装和运行该工具的方式:

go get -u golang.org/x/tools/go/analysis/passes/shadow/cmd/shadow
go vet -vettool=$(which shadow)

打印:

.\main.go:20:7: declaration of "err" shadows declaration at line 17

4. 运算符

1) 运算符优先级

Go运算符的优先级与其他语言不同:

Precedence   Operator
5            * / % << >> & &^
4            + - | ^
3            == != < <= > >=
2            &&
1            ||

将其与基于C的语言进行比较:

Precedence   Operator
10           *, /, %
9            +, -
8            <<, >>
7            <, <=, >, >=
6            ==, !=
5            &
4            ^
3            |
2            &&
1            ||

对于相同的表达式,这可能导致不同的结果:

In Go: 1 << 1 + 1 // (1<<1)+1 = 3
In C: 1 << 1 + 1 // 1<<(1+1) = 4

2) 自增和自减

与许多其他语言不同,Go没有前缀自增或自减运算符:

var i int
++i // syntax error: unexpected ++, expecting }
--i // syntax error: unexpected --, expecting }

尽管Go确实具有这些运算符的后缀版本,但Go不允许在表达式中使用它们:

slice := []int{1,2,3}
i := 1
slice[i++] = 0 // syntax error: unexpected ++, expecting :

3) 三元运算符

Go语言不支持三元运算符,像下面这样的代码:

result := a ? b : c

在Go中没有,你也不要费力寻找。您必须使用if-else代替。Go语言设计人员认为此运算符经常导致难看的代码,最好不要使用它。

4) 按位非

在Go中,XOR运算符\^被用作一元NOT运算符,而不是像许多其他语言使用〜符号。

In Go: ^1 // -2
In C: ~1 // -2

用于二元计算是,XOR运算符仍用作XOR(异或)运算符。

3^1 // 2

5.常量

1) iota

iota开始在Go中进行常量编号。但它并不非期望的“从零开始”,它是当前const块中常量的索引:

const (
    myconst = "c"
    myconst2 = "c2"
    two = iota // 2
)

两次使用iota不会重置编号:

const (
    zero = iota // 0
    one // 1
    two = iota // 2
)

6. 切片和数组

1) 切片和数组

在Go中,切片和数组的用途相似。它们的声明方式几乎相同:

package main

import "fmt"

func main() {
    slice := []int{1, 2, 3}
    array := [3]int{1, 2, 3}
    // let the compiler work out array length
    // this will be an equivalent of [3]int
    array2 := [...]int{1, 2, 3}
    fmt.Println(slice, array, array2)
}
[1 2 3] [1 2 3] [1 2 3]

切片感觉像是在顶部具有有用功能的数组。他们在实现的内部使用指向数组的指针。但是,切片要方便得多,以至于我们很少在Go中直接使用数组。

2) 数组

数组是有着固定大小内存的一组同类型元素的集合。不同长度的数组被认为是不同的不兼容类型。

与C语言不同,创建数组时,Go会将数组元素初始化为零值,因此我们无需再显式地执行此初始化操作。另外,与C不同的是,Go数组是值类型,它不是指向内存块第一个元素的指针。如果将数组传递给函数,则将复制整个数组。您仍然可以传递指向数组的指针以使其不被复制。

3) 切片

切片是数组段的描述符。这是一个非常有用的数据结构,但可能有点不寻常。有几种可以让你掉入坑中的场景,但如果您知道切片的内部工作原理,则可以避免这些“坑”。这是Go源代码中切片的实际定义:

type slice struct {
    array unsafe.Pointer
    len   int
    cap   int
}

Slice本身是一个值类型,但它使用指针引用它使用的数组。与数组不同,如果将切片传递给函数,则会获得数组指针,len和cap属性的副本(上图中的第一个块),但是数组本身的数据不会被复制,切片的两个副本都指向同一数组。当您“切片”一个切片时,也会发生同样的事情。Go会创建一个新的切片,该切片仍指向相同的数组:

package main

import "fmt"

func f1(s []int) {
    // slicing the slice creates a new slice
    // but does not copy the array data
    s = s[2:4]
    // modifying the sub-slice
    // changes the array of slice in main function as well
    for i := range s {
        s[i] += 10
    }
    fmt.Println("f1", s, len(s), cap(s))
}

func main() {
    s := []int{1, 2, 3, 4, 5}
    // passing a slice as an argument
    // makes a copy of the slice properties (pointer, len and cap)
    // but the copy shares the same array
    f1(s)
    fmt.Println("main", s, len(s), cap(s))
}

f1 [13 14] 2 3
main [1 2 13 14 5] 5 5

如果您不知道哪个分片,则可以假设它是一个值类型,并且感到惊讶的是f1“破坏了”main中切片中的数据。

4) 获取包括其数据的切片的副本

要获取切片及其数据的副本,您需要做一些工作。您可以将元素手动复制到新切片或使用复制(copy)或追加(append):

package main

import "fmt"

func f1(s []int) {
    s = s[2:4]
    s2 := make([]int, len(s))
    copy(s2, s)

    // or if you prefer less efficient, but more concise version:
    // s2 := append([]int{}, s[2:4]...)

    for i := range s2 {
        s2[i] += 10
    }

    fmt.Println("f1", s2, len(s2), cap(s2))
}

func main() {
    s := []int{1, 2, 3, 4, 5}
    f1(s)
    fmt.Println("main", s, len(s), cap(s))
}

f1 [13 14] 2 3
main [1 2 3 4 5] 5 5

5) 使用append扩充切片

切片的所有副本都共享同一数组,直到他们不这样做。切片最有用的属性是它可以为您自动管理数组的增长。当它需要超过现有数组容量时,它会分配一个全新的数组。如果您希望切片的两个副本共享数组,那么这也可能是陷阱:

package main

import "fmt"

func main() {
    // make a slice with length 3 and capacity 4
    s := make([]int, 3, 4)

    // initialize to 1,2,3
    s[0] = 1
    s[1] = 2
    s[2] = 3

    // capacity of the array is 4
    // adding one more number fits in the initial array
    s2 := append(s, 4)

    // modify the elements of the array
    // s and s2 still share the same array
    for i := range s2 {
        s2[i] += 10
    }

    fmt.Println(s, len(s), cap(s))    // [11 12 13] 3 4
    fmt.Println(s2, len(s2), cap(s2)) // [11 12 13 14] 4 4

    // this append grows the array past its capacity
    // new array must be allocated for s3
    s3 := append(s2, 5)

    // modify the elements of the array to see the result
    for i := range s3 {
        s3[i] += 10
    }

    fmt.Println(s, len(s), cap(s)) // still the old array [11 12 13] 3 4
    fmt.Println(s2, len(s2), cap(s2)) // the old array [11 12 13 14] 4 4

    // array was copied on last append [21 22 23 24 15] 5 8
    fmt.Println(s3, len(s3), cap(s3))
}

6) nil切片

无需检查切片是否为nil值,也不必对其初始化。len,cap和append等功能在nil slice上同样可以正常工作:

package main

import "fmt"

func main() {
    var s []int // nil slice
    fmt.Println(s, len(s), cap(s)) // [] 0 0
    s = append(s, 1)
    fmt.Println(s, len(s), cap(s)) // [1] 1 1
}

空切片(empty slice)与nil切片不是同一回事:

package main

import "fmt"

func main() {
    var s []int // this is a nil slice
    s2 := []int{} // this is an empty slice

    // looks like the same thing here:
    fmt.Println(s, len(s), cap(s)) // [] 0 0
    fmt.Println(s2, len(s2), cap(s2)) // [] 0 0

    // but s2 is actually allocated somewhere
    fmt.Printf("%p %p", s, s2) // 0x0 0x65ca90
}

如果您非常在意性能和内存使用情况,那么初始化一个空切片可能不如使用nil切片理想。

7) make陷阱

要创建一个新的切片,可以将make与切片类型以及切片的初始长度和容量一起使用。容量参数是可选的:

func make([]T, len, cap) []T

这样做太简单了:

package main

import (
    "fmt"
)

func main() {
    s := make([]int, 3)
    s = append(s, 1)
    s = append(s, 2)
    s = append(s, 3)
    fmt.Println(s)
}

[0 0 0 1 2 3]

不,这永远不会发生在我身上,我知道make创建切片的第二个参数是长度,而不是容量,我听到你说……

8) 未使用的切片的数组数据

由于对数组进行切片会创建一个新的切片,但会共享底层数组,因此有可能在内存中保留比你预期更多的数据。这是一个愚蠢的例子:

package main

import (
    "bytes"
    "fmt"
    "io/ioutil"
    "os"
)

func getExecutableFormat() []byte {
    // read our own executable file into memory
    bytes, err := ioutil.ReadFile(os.Args[0])
    if err != nil {
        panic(err)
    }
    return bytes[:4]
}

func main() {
    format := getExecutableFormat()
    if bytes.HasPrefix(format, []byte("ELF")) {
        fmt.Println("linux executable")
    } else if bytes.HasPrefix(format, []byte("MZ")) {
        fmt.Println("windows executable")
    }
}

在上面的代码中,只要该format变量在范围内并且不能被垃圾回收,则整个可执行文件(可能几兆字节的数据)将必须保留在内存中。要修复它,请复制实际需要的字节。

9) 多维切片

目前,Go中没有这样的东西。可能某天会有,但是此时此刻您需要自己计算元素索引来手动将一维切片用作多维切片,或者使用“锯齿状”切片(锯齿状切片是切片的切片):

package main

import "fmt"

func main() {
    x := 2
    y := 3
    s := make([][]int, y)
    for i := range s {
        s[i] = make([]int, x)
    }
    fmt.Println(s)
}

[[0 0] [0 0] [0 0]]

第二部分见下面链接:


“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,>每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需>求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足>广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖>中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

对Go 1.16 io/fs设计的第一感觉:得劲儿!

1. 设计io/fs的背景

Go语言的接口是Gopher最喜欢的语法元素之一,其隐式的契约满足和“当前唯一可用的泛型机制”的特质让其成为面向组合编程的强大武器,其存在为Go建立事物抽象奠定了基础,同时也是建立抽象的主要手段。

Go语言从诞生至今,最成功的接口定义之一就是io.Writer和io.Reader接口:

type Writer interface {
    Write(p []byte) (n int, err error)
}

type Reader interface {
    Read(p []byte) (n int, err error)
}

这两个接口建立了对数据源中的数据操作的良好的抽象,通过该抽象我们可以读或写满足这两个接口的任意数据源:

  • 字符串
r := strings.NewReader("hello, go")
r.Read(...)
  • 字节序列
r := bytes.NewReader([]byte("hello, go"))
r.Read(...)
  • 文件内数据
f := os.Open("foo.txt") // f 满足io.Reader
f.Read(...)
  • 网络socket
r, err :=  net.DialTCP("192.168.0.10", nil, raddr *TCPAddr) (*TCPConn, error)
r.Read(...)
  • 构造HTTP请求
req, err := http.NewRequestWithContext(ctx, "POST", url, bytes.NewReader([]byte("hello, go"))
  • 读取压缩文件内容
func main() {
    f, err := os.Open("hello.txt.gz")
    if err != nil {
        log.Fatal(err)
    }

    zr, err := gzip.NewReader(f)
    if err != nil {
        log.Fatal(err)
    }

    if _, err := io.Copy(os.Stdout, zr); err != nil {
        log.Fatal(err)
    }

    if err := zr.Close(); err != nil {
        log.Fatal(err)
    }
}

… …

能构架出io.Reader和Writer这样的抽象,与Go最初核心团队的深厚的Unix背景是密不可分的,这一抽象可能深受“在UNIX中,一切都是字节流”这一设计哲学的影响。

Unix还有一个设计哲学:一切都是文件,即在Unix中,任何有I/O的设备,无论是文件、socket、驱动等,在打开设备之后都有一个对应的文件描述符,Unix将对这些设备的操作简化在抽象的文件中了。用户只需要打开文件,将得到的文件描述符传给相应的操作函数,操作系统内核就知道如何根据这个文件描述符得到具体设备信息,内部隐藏了对各种设备进行读写的细节。

并且Unix还使用树型的结构将各种抽象的文件(数据文件、socket、磁盘驱动器、外接设备等)组织起来,通过文件路径对其进行访问,这样的一个树型结构构成了文件系统。

不过由于历史不知名的某个原因,Go语言并没有在标准库中内置对文件以及文件系统的抽象!我们知道如今的os.File是一个具体的结构体类型,而不是抽象类型:

// $GOROOT/src/os/types.go

// File represents an open file descriptor.
type File struct {
        *file // os specific
}

结构体os.File中唯一的字段file指针还是一个操作系统相关的类型,我们以os/file_unix.go为例,在unix中,file的定义如下:

// file is the real representation of *File.
// The extra level of indirection ensures that no clients of os
// can overwrite this data, which could cause the finalizer
// to close the wrong file descriptor.
type file struct {
        pfd         poll.FD
        name        string
        dirinfo     *dirInfo // nil unless directory being read
        nonblock    bool     // whether we set nonblocking mode
        stdoutOrErr bool     // whether this is stdout or stderr
        appendMode  bool     // whether file is opened for appending
}

Go语言之父Rob Pike对当初os.File没有被定义为interface而耿耿于怀

不过就像Russ Cox在上述issue中的comment那样:“我想我会认为io.File应该是接口,但现在这一切都没有意义了”:

但在Go 1.16的embed文件功能设计过程中,Go核心团队以及参与讨论的Gopher们认为引入一个对File System和File的抽象,将会像上面的io.Reader和io.Writer那样对Go代码产生很大益处,同时也会给embed功能的实现带去便利!于是Rob Pike和Russ Cox亲自上阵完成了io/fs的设计

2. 探索io/fs包

io/fs的加入也不是“临时起意”,早在很多年前的godoc实现时,对一个抽象的文件系统接口的需求就已经被提了出来并给出了实现:

最终这份实现以godoc工具的vfs包的形式一直长期存在着。虽然它的实现有些复杂,抽象程度不够,但却对io/fs包的设计有着重要的参考价值。

Go语言对文件系统与文件的抽象以io/fs中的FS接口类型和File类型落地,这两个接口的设计遵循了Go语言一贯秉持的“小接口原则”,并符合开闭设计原则(对扩展开放,对修改关闭)。

// $GOROOT/src/io/fs/fs.go
type FS interface {
        // Open opens the named file.
        //
        // When Open returns an error, it should be of type *PathError
        // with the Op field set to "open", the Path field set to name,
        // and the Err field describing the problem.
        //
        // Open should reject attempts to open names that do not satisfy
        // ValidPath(name), returning a *PathError with Err set to
        // ErrInvalid or ErrNotExist.
        Open(name string) (File, error)
}

// A File provides access to a single file.
// The File interface is the minimum implementation required of the file.
// A file may implement additional interfaces, such as
// ReadDirFile, ReaderAt, or Seeker, to provide additional or optimized functionality.
type File interface {
        Stat() (FileInfo, error)
        Read([]byte) (int, error)
        Close() error
}

FS接口代表虚拟文件系统的最小抽象,它仅包含一个Open方法;File接口则是虚拟文件的最小抽象,仅包含抽象文件所需的三个共同方法(不能再少了)。我们可以基于这两个接口通过Go常见的嵌入接口类型的方式进行扩展,就像io.ReadWriter是基于io.Reader的扩展那样。在这份设计提案中,作者还将这种方式命名为extension interface,即在一个基本接口类型的基础上,新增一到多个新方法以形成一个新接口。比如下面的基于FS接口的extension interface类型StatFS:

// A StatFS is a file system with a Stat method.
type StatFS interface {
        FS

        // Stat returns a FileInfo describing the file.
        // If there is an error, it should be of type *PathError.
        Stat(name string) (FileInfo, error)
}

对于File这个基本接口类型,fs包仅给出一个extension interface:ReadDirFile,即在File接口的基础上增加了一个ReadDir方法形成的,这种用扩展方法名+基础接口名来命名一个新接口类型的方式也是Go的惯用法。

对于FS接口,fs包给出了一些扩展FS的常见“新扩展接口”的样例:

以fs包的ReadDirFS接口为例:

// $GOROOT/src/io/fs/readdir.go
type ReadDirFS interface {
    FS

    // ReadDir reads the named directory
    // and returns a list of directory entries sorted by filename.
    ReadDir(name string) ([]DirEntry, error)
}

// ReadDir reads the named directory
// and returns a list of directory entries sorted by filename.
//
// If fs implements ReadDirFS, ReadDir calls fs.ReadDir.
// Otherwise ReadDir calls fs.Open and uses ReadDir and Close
// on the returned file.
func ReadDir(fsys FS, name string) ([]DirEntry, error) {
    if fsys, ok := fsys.(ReadDirFS); ok {
        return fsys.ReadDir(name)
    }

    file, err := fsys.Open(name)
    if err != nil {
        return nil, err
    }
    defer file.Close()

    dir, ok := file.(ReadDirFile)
    if !ok {
        return nil, &PathError{Op: "readdir", Path: name, Err: errors.New("not implemented")}
    }

    list, err := dir.ReadDir(-1)
    sort.Slice(list, func(i, j int) bool { return list[i].Name() < list[j].Name() })
    return list, err
}

我们看到伴随着ReadDirFS,标准库还提供了一个helper函数:ReadDir。该函数的第一个参数为FS接口类型的变量,在其内部实现中,ReadDir先通过类型断言判断传入的fsys是否实现了ReadDirFS,如果实现了,就直接调用其ReadDir方法;如果没有实现则给出了常规实现。其他几个FS的extension interface也都有自己的helper function,这也算是Go的一个惯例。如果你要实现你自己的FS的扩展,不要忘了这个惯例:给出伴随你的扩展接口的helper function

标准库中一些涉及虚拟文件系统的包在Go 1.16版本中做了对io/fs的适配,比如:os、net/http、html/template、text/template、archive/zip等。

以http.FileServer为例,Go 1.16版本之前建立一个静态文件Server一般这么来写:

// github.com/bigwhite/experiments/blob/master/iofs/fileserver_classic.go
package main

import "net/http"

func main() {
    http.ListenAndServe(":8080", http.FileServer(http.Dir(".")))
}

Go 1.16 http包对fs的FS和File接口做了适配后,我们可以这样写:

// github.com/bigwhite/experiments/blob/master/iofs/fileserver_iofs.go
package main

import (
    "net/http"
    "os"
)

func main() {
    http.ListenAndServe(":8080", http.FileServer(http.FS(os.DirFS("./"))))
}

os包新增的DirFS函数返回一个fs.FS的实现:一个以传入dir为根的文件树构成的File System。

我们可以参考DirFS实现一个goFilesFS,该FS的实现仅返回以.go为后缀的文件:

// github.com/bigwhite/experiments/blob/master/iofs/gofilefs/gofilefs.go

package gfs

import (
    "io/fs"
    "os"
    "strings"
)

func GoFilesFS(dir string) fs.FS {
    return goFilesFS(dir)
}

type goFile struct {
    *os.File
}

func Open(name string) (*goFile, error) {
    f, err := os.Open(name)
    if err != nil {
        return nil, err
    }
    return &goFile{f}, nil
}

func (f goFile) ReadDir(count int) ([]fs.DirEntry, error) {
    entries, err := f.File.ReadDir(count)
    if err != nil {
        return nil, err
    }
    var newEntries []fs.DirEntry

    for _, entry := range entries {
        if !entry.IsDir() {
            ss := strings.Split(entry.Name(), ".")
            if ss[len(ss)-1] != "go" {
                continue
            }
        }
        newEntries = append(newEntries, entry)
    }
    return newEntries, nil
}

type goFilesFS string

func (dir goFilesFS) Open(name string) (fs.File, error) {
    f, err := Open(string(dir) + "/" + name)
    if err != nil {
        return nil, err // nil fs.File
    }
    return f, nil
}

上述GoFilesFS的实现中:

  • goFilesFS实现了io/fs的FS接口,而其Open方法返回的fs.File实例为我自定义的goFile结构;
  • goFile结构通过嵌入*os.File满足了io/fs的File接口;
  • 我们重写goFile的ReadDir方法(覆盖os.File的同名方法),在这个方法中我们过滤掉非.go后缀的文件。

有了GoFilesFS的实现后,我们就可以将其传给http.FileServer了:

// github.com/bigwhite/experiments/blob/master/iofs/fileserver_gofilefs.go
package main

import (
    "net/http"

    gfs "github.com/bigwhite/testiofs/gofilefs"
)

func main() {
    http.ListenAndServe(":8080", http.FileServer(http.FS(gfs.GoFilesFS("./"))))
}

通过浏览器打开localhost:8080页面,我们就能看到仅由go源文件组成的文件树!

3. 使用io/fs提高代码可测性

抽象的接口意味着降低耦合,意味着代码可测试性的提升。Go 1.16增加了对文件系统和文件的抽象之后,我们以后再面对文件相关代码时,我们便可以利用io/fs提高这类代码的可测试性。

我们有这样的一个函数:

func FindGoFiles(dir string) ([]string, error)

该函数查找出dir下所有go源文件的路径并放在一个[]string中返回。我们可以很轻松的给出下面的第一版实现:

// github.com/bigwhite/experiments/blob/master/iofs/gowalk/demo1/gowalk.go

package demo

import (
    "os"
    "path/filepath"
    "strings"
)

func FindGoFiles(dir string) ([]string, error) {
    var goFiles []string
    err := filepath.Walk(dir, func(path string, info os.FileInfo, err error) error {
        if info.IsDir() {
            return nil
        }

        ss := strings.Split(path, ".")
        if ss[len(ss)-1] != "go" {
            return nil
        }

        goFiles = append(goFiles, path)
        return nil
    })
    if err != nil {
        return nil, err
    }

    return goFiles, nil
}

这一版的实现直接使用了filepath的Walk函数,它与os包是紧绑定的,即要想测试这个函数,我们需要在磁盘上真实的构造出一个文件树,就像下面这样:

$tree testdata
testdata
└── foo
    ├── 1
    │   └── 1.txt
    ├── 1.go
    ├── 2
    │   ├── 2.go
    │   └── 2.txt
    └── bar
        ├── 3
        │   └── 3.go
        └── 4.go

按照go惯例,我们将测试依赖的外部数据文件放在testdata下面。下面是针对上面函数的测试文件:

// github.com/bigwhite/experiments/blob/master/iofs/gowalk/demo1/gowalk_test.go
package demo

import (
    "testing"
)

func TestFindGoFiles(t *testing.T) {
    m := map[string]bool{
        "testdata/foo/1.go":       true,
        "testdata/foo/2/2.go":     true,
        "testdata/foo/bar/3/3.go": true,
        "testdata/foo/bar/4.go":   true,
    }

    files, err := FindGoFiles("testdata/foo")
    if err != nil {
        t.Errorf("want nil, actual %s", err)
    }

    if len(files) != 4 {
        t.Errorf("want 4, actual %d", len(files))
    }

    for _, f := range files {
        _, ok := m[f]
        if !ok {
            t.Errorf("want [%s], actual not found", f)
        }
    }
}

FindGoFiles函数的第一版设计显然可测性较差,需要对依赖特定布局的磁盘上的文件,虽然testdata也是作为源码提交到代码仓库中的。

有了io/fs包后,我们用FS接口来提升一下FindGoFiles函数的可测性,我们重新设计一下该函数:

// github.com/bigwhite/experiments/blob/master/iofs/gowalk/demo2/gowalk.go

package demo

import (
    "io/fs"
    "strings"
)

func FindGoFiles(dir string, fsys fs.FS) ([]string, error) {
    var newEntries []string
    err := fs.WalkDir(fsys, dir, func(path string, entry fs.DirEntry, err error) error {
        if entry == nil {
            return nil
        }

        if !entry.IsDir() {
            ss := strings.Split(entry.Name(), ".")
            if ss[len(ss)-1] != "go" {
                return nil
            }
            newEntries = append(newEntries, path)
        }
        return nil
    })

    if err != nil {
        return nil, err
    }

    return newEntries, nil
}

这次我们给FindGoFiles增加了一个fs.FS类型的参数fsys,这是解除掉该函数与具体FS实现的关键。当然demo1的测试方法同样适用于该版FindGoFiles函数:

// github.com/bigwhite/experiments/blob/master/iofs/gowalk/demo2/gowalk_test.go
package demo

import (
    "os"
    "testing"
)

func TestFindGoFiles(t *testing.T) {
    m := map[string]bool{
        "testdata/foo/1.go":       true,
        "testdata/foo/2/2.go":     true,
        "testdata/foo/bar/3/3.go": true,
        "testdata/foo/bar/4.go":   true,
    }

    files, err := FindGoFiles("testdata/foo", os.DirFS("."))
    if err != nil {
        t.Errorf("want nil, actual %s", err)
    }

    if len(files) != 4 {
        t.Errorf("want 4, actual %d", len(files))
    }

    for _, f := range files {
        _, ok := m[f]
        if !ok {
            t.Errorf("want [%s], actual not found", f)
        }
    }
}

但这不是我们想要的,既然我们使用了io/fs.FS接口,那么一切实现了fs.FS接口的实体均可被用来构造针对FindGoFiles的测试。但自己写一个实现了fs.FS接口以及fs.File相关接口还是比较麻烦的,Go标准库已经想到了这点,为我们提供了testing/fstest包,我们可以直接利用fstest包中实现的基于memory的FS来对FindGoFiles进行测试:

// github.com/bigwhite/experiments/blob/master/iofs/gowalk/demo3/gowalk_test.go
package demo

import (
    "testing"
    "testing/fstest"
)

/*
$tree testdata
testdata
└── foo
    ├── 1
    │   └── 1.txt
    ├── 1.go
    ├── 2
    │   ├── 2.go
    │   └── 2.txt
    └── bar
        ├── 3
        │   └── 3.go
        └── 4.go

5 directories, 6 files

*/

func TestFindGoFiles(t *testing.T) {
    m := map[string]bool{
        "testdata/foo/1.go":       true,
        "testdata/foo/2/2.go":     true,
        "testdata/foo/bar/3/3.go": true,
        "testdata/foo/bar/4.go":   true,
    }

    mfs := fstest.MapFS{
        "testdata/foo/1.go":       {Data: []byte("package foo\n")},
        "testdata/foo/1/1.txt":    {Data: []byte("1111\n")},
        "testdata/foo/2/2.txt":    {Data: []byte("2222\n")},
        "testdata/foo/2/2.go":     {Data: []byte("package bar\n")},
        "testdata/foo/bar/3/3.go": {Data: []byte("package zoo\n")},
        "testdata/foo/bar/4.go":   {Data: []byte("package zoo1\n")},
    }

    files, err := FindGoFiles("testdata/foo", mfs)
    if err != nil {
        t.Errorf("want nil, actual %s", err)
    }

    if len(files) != 4 {
        t.Errorf("want 4, actual %d", len(files))
    }

    for _, f := range files {
        _, ok := m[f]
        if !ok {
            t.Errorf("want [%s], actual not found", f)
        }
    }
}

由于FindGoFiles接受了fs.FS类型变量作为参数,使其可测性显著提高,我们可以通过代码来构造测试场景,而无需在真实物理磁盘上构造复杂多变的测试场景。

4. 小结

io/fs的加入让我们易于面向接口编程,而不是面向os.File这个具体实现。io/fs的加入丝毫没有违和感,就好像这个包以及其中的抽象在Go 1.0版本发布时就存在的一样。这也是Go interface隐式依赖的特质带来的好处,让人感觉十分得劲儿!

本文中涉及的代码可以在这里下载。https://github.com/bigwhite/experiments/tree/master/iofs


“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats