标签 C 下的文章

C单元测试包设计与实现

在Java、C++和C#等高级语言的单元测试正进行的如火如荼的时候,C好像做了看客,冷清的躲在了一个不起眼的角落里。C并不是没有单元测试工具,像Check和CUnit这样的工具也很有名气,只是和大名鼎鼎的JUnit比起来,还是显得有些英雄气短。很多大型的C项目,如APR等都没有使用像Check、CUnit这样通用的单元测试框架,而是另起炉灶自己编写。其实编写一个仅能满足单个项目需要的C单元测试工具包并非难事。在部分参考APR的ABTS的前提下,我们也来设计一套自己的简单的C语言单元测试包。

鉴于减少复杂性,我们的目标仅仅是设计和实现一套能在单进程、单线程下工作良好的C单元测试包,我们暂且将之命名为CUT – C Unit test Toolkit。
1、CUT涉及的术语解释
曾经接触过多个有名的单元测试框架如JUnit、CppUnit、TestNG等,它们在对单元测试某些概念的理解上并不是全都一样的。这里我们也有我们自己的定义。
a) 一个逻辑unit test包含至少一个或者多个suite;
b) 一个suite包含至少0或者多个test case;
c) 每个test case中至少包含1个或者多个“断言类”语句。

2、CUT预告片
其实每设计一个程序之前自己都会考虑该提供给用户怎样的东东呢?下面是应该是CUT的经典用法:
cut_ts_t *suite = NULL;

CUT_TEST_BEGIN("classic usage of CUT");

CUT_TS_INIT(suite); 
CUT_TC_ADD(suite, "test case: tc_add", tc_add);
CUT_TC_ADD(suite, "test case: tc_sub", tc_sub);
CUT_TS_ADD(suite, my_setup, my_teardown);

CUT_TEST_RUN();

CUT_TEST_REPORT();

CUT_TEST_END();

3、CUT的组织结构
从上面的经典用法中也可以看出我们的CUT的组织是这样的:
            Test
             |
             |
        +————-+
       TS-1    …  TS-N
        |                |
        |                |
   +——-+ …   +——–+
  TC-1   TC-N     TC-1     TC-N
其中:TS – Test Suite,TC – Test Case

4、CUT接口设计与实现
在“预告片”中我们已经暴露了大部分CUT的重要接口,在下面我们将伴随着实现逐一说明。另外在CUT的实现中我们使用了APR RING技术,不了解APR RING的可以参见我的上一篇Blog“APR分析-环篇”。
1) 主要数据结构
typedef void (*tc_func)(cut_tc_t *tc); /* Test Case标准原型函数指针,所有的Test Case都应该符合这个原型 */
typedef void (*fixture_func)();  /* 用于suite环境建立和拆除的func原型 */

/* Test Case数据结构 */
typedef struct cut_tc_t {
        APR_RING_ENTRY(cut_tc_t)        link;
        char                            name[CUT_MAX_STR_LEN+1];
        tc_func                         func;
        int                             failed;
} cut_tc_t;
typedef APR_RING_HEAD(cut_tc_head_t, cut_tc_t) cut_tc_head_t;

/* Test Suite数据结构 */
typedef struct cut_ts_t {
        APR_RING_ENTRY(cut_ts_t)        link;
        cut_tc_head_t                   tc_head;
        int                             failed; /* 失败用例总数 */
        int                             ran; /* 运行用例总数 */
        fixture_func                    sf; /* setup func */
        fixture_func                    tf; /* teardown func */
} cut_ts_t;
typedef APR_RING_HEAD(cut_ts_head_t, cut_ts_t) cut_ts_head_t;

/* 逻辑单元测试数据结构 */
typedef struct cut_test_t {
        char                            name[CUT_MAX_STR_LEN+1];
        cut_ts_head_t                   ts_head;
} cut_test_t;

2) CUT_TEST_BEGIN和CUT_TEST_END
这两者分别是一个逻辑Test的开始与结束。我们在CUT_TEST_BEGIN建立好我们的内部数据结构,其唯一宏参数用来加强可读性,在CUT_TEST_END中释放在测试过程中获取的系统资源。其实现如下:
#define CUT_TEST_BEGIN(desc) \
        cut_test_t *_cut_test = NULL; \
        _cut_test = malloc(sizeof(cut_test_t)); \
        if (_cut_test == NULL) { \
                return errno; \
        } \
        memset(_cut_test, 0, sizeof(cut_test_t)); \
        APR_RING_INIT(&(_cut_test->ts_head), cut_ts_t, link); \
        strncpy(_cut_test->name, desc, CUT_MAX_STR_LEN)

#define CUT_TEST_END() do { \
  /* 这里遍历Ring,释放其他相关内存,这里限于篇幅未写出 */
                if (_cut_test != NULL) { \
                        free(_cut_test); \
                } \
        } while(0)

3) CUT_TS_ADD和CUT_TC_ADD
前者负责向一逻辑单元测试中添加Test Suite,后者则负责向一个Test Suite中添加测试用例。在CUT中,每个Test Suite依赖两个Fixture Function- setup和teardown。setup用于建立测试环境,比如打开某文件,获得文件句柄供该Test Suite中的若干Test Case使用;而teardown则用来做后处理,释放setup以及在众多Test Case执行时分配的资源,比如上面关闭提到的文件句柄。

在实现CUT的Test Suite时,实际上加了一个对用户使用的限制,那就是CUT负责管理Test Suite的内存分配,说限制也好我觉得倒是给用户提供了一种方便。这两个宏的实现如下:
#define CUT_TEST_SUITE_INIT(suite) do { \
                if (suite == NULL) { \
                        suite = malloc(sizeof(cut_ts_t)); \
                        if (suite == NULL) { \
                                return errno; \
                        } \
                } \
                memset(suite, 0, sizeof(cut_ts_t)); \
                APR_RING_INIT(&(suite->tc_head), cut_tc_t, link); \
                suite->ran = 0; \
                suite->failed = 0; \
        } while(0)

#define CUT_TS_ADD(suite, f1, f2) do { \
                APR_RING_ELEM_INIT(suite, link); \
                suite->sf = f1; \
                suite->tf = f2; \
                APR_RING_INSERT_TAIL(&(_cut_test->ts_head), suite, cut_ts_t, link); \               
        } while(0)

#define CUT_TC_ADD(suite, desc, f1) do { \
                cut_tc_t *tc = NULL; \
                tc = malloc(sizeof(cut_tc_t)); \
                if (tc == NULL) { \
                        return errno; \
                } \
                memset(tc, 0, sizeof(cut_tc_t)); \
                strncpy(tc->name, desc, CUT_MAX_STR_LEN); \
                tc->func = f1; \
                APR_RING_ELEM_INIT(tc, link); \
                APR_RING_INSERT_TAIL(&(suite->tc_head), tc, cut_tc_t, link); \
        } while(0)

4) CUT_TEST_RUN和CUT_TEST_REPORT
这两个宏的作用分别是运行所有逻辑单元测试中的测试用例和报告测试情况,在这里CUT_TEST_REPORT输出形式较为简单,只是打印出此次单元测试运行用例总数和失败的用例数。当然要丰富其输出形式,让用户更快更早定位哪个测试用例失败也并不难,只需对CUT的实现稍作修改即可,这里仅是抛砖引玉。具体可参见成熟的工具的输出形式,如CUnit等。
#define CUT_TEST_RUN() do { \
                cut_ts_t *ts = NULL; \
                cut_tc_t *tc = NULL; \
                APR_RING_TRAVERSE(ts, &(_cut_test->ts_head), cut_ts_t, link) { \
                        if (ts != NULL) { \
                                if (ts->sf != NULL) { \
                                        ts->sf(); \ /* execute setup func */
                                } \
                                APR_RING_TRAVERSE(tc, &(ts->tc_head), cut_tc_t, link) { \
                                        if (tc != NULL) { \
                                APR_RING_TRAVERSE(tc, &(ts->tc_head), cut_tc_t, link) { \
                                        if (tc != NULL) { \
                                                tc->func(tc); \
                                        } \
                                } \
                                if (ts->tf != NULL) { \
                                        ts->tf(); \ /* execute teardown func */
                                } \
                        } \
                } \
        } while(0)

#define CUT_TEST_REPORT() do { \
                int ran = 0; \
                int failed = 0; \
                cut_ts_t *ts = NULL; \
                cut_tc_t *tc = NULL; \
                APR_RING_TRAVERSE(ts, &(_cut_test->ts_head), cut_ts_t, link) { \
                        if (ts != NULL) { \
                                APR_RING_TRAVERSE(tc, &(ts->tc_head), cut_tc_t, link) { \
                                        if (tc != NULL) { \
                                                ran++; \
                                                failed += tc->failed; \
                                        } \
                                } \
                        } \
                } \
                printf("total tc is %d, and failed tc is %d\n", ran, failed); \
        } while(0)

5) 断言集合
评价一个单元测试工具好坏的重要标准之一就是它的断言集的多寡和易用性。大部分单元测试工具都提供几十个各种各样的断言接口,我这里仅仅是举一个断言接口例子:
我们提供一个整型数判等断言接口:
void cut_int_equal(cut_case_t *tc, const int expected, const int actual, int lineno)
{
        if (expected != actual) {
                tc->failed += 1;
  /* 其他处理,如记录断言发生位置信息等 */
        }
}

这样我们就可以在我们的测试用例中这样使用了:
void tc_add(cut_case_t *tc) {
        int a = 1;
        int b = 2;
        cut_int_equal(tc, 3, add(a, b), __LINE__);
}

5、一个简单但完整的测试实例
CUT以头文件和静态库的形式发布,使用CUT只需要引用其头文件,并在链接时链接CUT的静态库即可。
在下面的例子中我们执行了两个测试用例:
#include "cut.h"
#include "my_math.h" //for add and sub interface

void my_setup() {
        printf("setup for suite\n");
}

void my_teardown() {
        printf("teardown for suite\n");
}

void tc_add(cut_case_t *tc) {
        int a = 1;
        int b = 2;
        cut_int_equal(tc, 3, add(a, b), __LINE__);
}

void tc_sub(cut_case_t *tc) {
        int a = 3;
        int b = 1;
        cut_int_equal(tc, 1, sub(a, b), __LINE__); // 会导致断言错误
}

int main() {
        cut_suite_t *suite = NULL;

        CUT_TEST_BEGIN("test with cut");

        CUT_TEST_SUITE_INIT(suite);

        CUT_TC_ADD(suite, "test tpl_addition:", tc_add);
        CUT_TC_ADD(suite, "test tpl_subtraction:", tc_sub);
        CUT_TS_ADD(suite, my_setup, my_teardown);

        CUT_TEST_RUN();

        CUT_TEST_REPORT();

        CUT_TEST_END();

        return 0;
}

测试结果:
total tc is 2, and failed tc is 1

6、小结
这里仅仅是提出一种实现C Unit Testing Framework的方案,而且仅仅是证明其可行,其离成熟的程度还远得很。我们可以从已经成熟的单元测试工具那里借鉴很多东西过来,如Test Group概念、XML配置等。改进是永无止境的,任重道远啊:)。

APR源代码分析-环篇

APR中少见对数据结构的封装,好像唯一例外的就是其对循环链表,即环(RING)的封装。

在大学的时候学的不是计算机专业,但大三的时候我所学的专业曾开过一门好像叫“计算机软件开发基础”的课,使用的是清华的一本教材,课程的内容包括数据结构。说实话听过几节课,那个老师讲的还不错,只是由于课程目标所限,没讲那么深罢了。当然我接触数据结构要早于这门课的开课时间。早在大一下学期就开始到计算机专业旁听“数据结构”,再说一次实话,虽号称名校名专业,但是那个老师的讲课水平却不敢恭维。

言归正传! 简单说说环(RING):环是一个首尾相连的双向链表,也就是我们所说的循环链表。对应清华的那本经典的《数据结构》一书中线性表一章的内容,按照书中分类其属于线性表中的链式存储的一种。环是很常见也很实用的数据结构,相信在这个世界上环的实现不止成千上万,但是APR RING(按照APR RING源代码中的注释所说,APR RING的实现源自4.4BSD)却是其中较独特的一个,其最大的特点是其所有对RING的操作都由一组宏(大约30个左右)来实现。在这里不能逐个分析,仅说说一些让人印象深刻的方面吧。

1、如何使用APR RING?
我们先来点感性认识! 下面是一个典型的使用APR RING的样例:
假设环节点的结构如下:
struct  elem_t {    /* APR RING链接的元素类型定义 */
    APR_RING_ENTRY(elem_t)  link; /* 链接域 */
    int                                     foo; /* 数据域 */
};

APR_RING_HEAD(elem_head_t, elem_t);

int main() {
    struct elem_head_t  head;
    struct elem_t       *el;

    APR_RING_INIT(&head, elem_t, link);

    /* 使用其他操作宏插入、删除等操作,例如 */
    el = malloc(sizeof(elem_t);
    el->foo = 20051103;
    APR_RING_ELEM_INIT(el, link);
    APR_RING_INSERT_TAIL(&h, el, elem_t, link);
}

2、APR RING的难点–“哨兵”
环是通过头节点来管理的,头节点是这样一种节点,其next指针指向RING的第一个节点,其prev指针指向RING的最后一个节点,即尾节点。但是通过察看源码发现APR RING通过APR_RING_HEAD宏定义的头节点形式如下:
#define APR_RING_HEAD(head, elem)     \
    struct head {       \
             struct elem *next;      \
             struct elem *prev;      \
    }
如果按照上面的例子进行宏展开,其形式如下:
struct elem_head_t {
     struct elem_t *next;
     struct elem_t *prev;
};

而一个普通的元素elem_t展开形式如下:
struct elem_t {
     struct {       \
        struct elem_t *next;     \
        struct elem_t *prev;     \
     } link;

     int foo;
};
通过对比可以看得出头节点仅仅相当于一个elem_t的link域。这样做的话必然带来对普通节点和头节点在处理上的不一致,为了避免这种情况的发生,APR RING引入了“哨兵(sentinel)”节点的概念。我们先看看哨兵节点在整个链表中的位置。

sentinel->next = 链表的第一个节点;
sentinel->prev = 链表的最后一个节点;

但是察看APR RING的源码你会发现sentinel节点只是个虚拟存在的节点,这个虚拟节点既有数据域(虚拟出来的,不能引用)又有链接域,好似与普通节点并无差别。在APR RING的源文件中使用了下面这幅图来说明sentinel的位置,同时也指出了sentinel和head的关系 — head即为sentinel虚拟节点的link域。

 普通节点
+->+——-+<–
   |struct |
   |elem   |
   +——-+
   |prev   |
   |   next|
   +——-+
   | etc.  |
   .       .
   .       .

sentinel节点
+->+——–+<–
   |sentinel|
   |elem    |
   +——–+
   |ring    |
   |   head |
   +——–+

再看看下面APR_RING_INIT的源代码:
#define APR_RING_INIT(hp, elem, link) do {    \
            APR_RING_FIRST((hp)) = APR_RING_SENTINEL((hp), elem, link); \
           APR_RING_LAST((hp))  = APR_RING_SENTINEL((hp), elem, link); \
    } while (0)
你会发现:初始化RING实际上是将head的next和prev指针都指向了sentinel虚拟节点了。从sentinel的角度来说相当于其自己的link域的next和prev都指向了自己。所以判断APR RING是否为空只需要判断RING的首个节点是否为sentinel虚拟节点即可。APR_RING_EMPTY宏就是这么做的:
#define APR_RING_EMPTY(hp, elem, link)     \
    (APR_RING_FIRST((hp)) == APR_RING_SENTINEL((hp), elem, link))

那么如何计算sentinel虚拟节点的地址呢?
我们这样思考:从普通节点说起,如果我们知道一个普通节点的首地址(elem_addr),那么我们计算其link域的地址(link_addr)的公式就应该为link_addr = elem_addr + offsetof(elem_t, link);前面我们一直在说sentinel虚拟节点看起来和普通节点没什么区别,所以它仍然符合该计算公式。前面我们又说过head_addr是sentinel节点的link域,这样的话我们将head_addr输入到公式中得到head_addr = sentinel_addr + offsetof(elem_t, link),做一下变换即可得到sentinel_addr = head_addr – offsetof(elem_t, link)。看看APR RING源代码就是这样实现的:
#define APR_RING_SENTINEL(hp, elem, link)    \
    (struct elem *)((char *)(hp) – APR_OFFSETOF(struct elem, link))

至此APR RING使用一个虚拟sentinel节点分隔RING的首尾节点,已达到对节点操作一致的目的。

3、使用时注意事项
这里在使用APR RING时有几点限制:
a) 在定义RING的元素结构时,需要把APR_RING_ENTRY放在结构的第一个字段的位置。
b) 链接一种类型的元素就要使用APR_RING_HEAD宏定义该种类型RING的头节点类型。学过C++或者了解泛型的人可能都会体味到这里的设计有那么一点范型的味道。比如:
模板:APR_RING_HEAD(T_HEAD, T) —- 链接—-> T类型元素
实例化:APR_RING_HEAD(elem_head_t, elem_t) — 链接—->elem_t类型元素
 
4、APR RING不足之处
1) 缺少遍历接口
浏览APR RING源码后发现缺少一个遍历宏接口,这里提供一种正向遍历实现:

#define APR_RING_TRAVERSE(ep, hp, elem, link)    \
            for ((ep)  = APR_RING_FIRST((hp));     \
            (ep) != APR_RING_SENTINEL((hp), elem, link);   \
           (ep)  = APR_RING_NEXT((ep), link))
大家还可以模仿写出反向遍历的接口APR_RING_REVERSE_TRAVERSE。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats