2026年一月月 发布的文章

当 Go 遇上 GPU:用 CUDA 释放千倍算力的实战指南

本文永久链接 – https://tonybai.com/2026/01/21/integrating-cuda-in-go

大家好,我是Tony Bai。

长期以来,高性能计算(HPC)和 GPU 编程似乎是 C++ 开发者的专属领地。Go 语言虽然在并发和服务端开发上表现卓越,但在触及 GPU 算力时,往往显得力不从心。

然而,在最近的 GopherCon 2025 上,软件架构师 Sam Burns 打破了这一刻板印象。他展示了如何通过 Go 和 CUDA 的结合,让 Gopher 也能轻松驾驭 GPU 的海量核心,实现惊人的并行计算能力。

本文将带你深入这场演讲的核心,从 GPU 的独特架构到内存模型,再通过一个完整的、可运行的矩阵乘法示例,手把手教你如何用 Go 驱动 NVIDIA 显卡释放澎湃算力。

img{512x368}

为什么 Go 开发者需要关注 GPU?

在摩尔定律逐渐失效的今天,CPU 的单核性能提升已遇瓶颈。虽然 CPU 拥有极低的延迟、卓越的分支预测能力和巨大的缓存,但它的核心数量(通常在几十个量级)限制了其处理大规模并行任务的能力。

相比之下,GPU (Graphics Processing Unit) 走的是另一条路。它拥有成千上万个核心。虽然单个 GPU 核心的频率较低,且缺乏复杂的逻辑控制能力,但它们能同时处理海量简单的计算任务。这使得 GPU 成为以下场景的绝佳选择:

  • 图形处理与视频转码
  • AI 模型推理与训练(神经网络本质上就是大规模矩阵运算)
  • 物理模拟与科学计算(如流体力学、分子动力学)
  • 密码学与哈希碰撞

通过 Go 语言集成 CUDA,我们可以在享受 Go 语言高效开发体验(构建 API、微服务、调度逻辑)的同时,将最繁重的“脏活累活”卸载给 GPU,实现 CPU 负责逻辑,GPU 负责算力 的完美分工。

GPU架构与CUDA编程模型速览——理解 GPU 的“兵团”

在编写代码之前,我们需要理解 GPU 的独特架构。Sam Burns 用一个形象的比喻描述了 GPU 的线程模型。如果说 CPU 是几位精通各种技能的“专家”,那么 GPU 就是一支纪律严明、规模庞大的“兵团”。

而指挥这支兵团的指令集,我们称之为 “内核” (Kernel)

0. 什么是 Kernel?

此 Kernel 非彼 Kernel(操作系统内核)。在 CUDA 语境下,Kernel 是一个运行在 GPU 上的函数

当我们“启动”一个 Kernel 时,GPU 并不是简单地调用这个函数一次,而是同时启动成千上万个线程,每个线程都在独立执行这份相同的代码逻辑。每个线程通过读取自己独一无二的 ID(threadIdx),来决定自己该处理数据的哪一部分(比如图像的哪个像素,或矩阵的哪一行)。

1. 线程模型:从 Thread 到 Grid

理解了 Kernel,我们再看它是如何被调度执行的。CUDA 编程模型将计算任务分解为三个层级:

  • 线程 (Thread):GPU 工作的最小单位。它类似于 CPU 的线程,但极其轻量。每个线程都有自己的 ID,负责处理数据的一小部分(例如图像中的一个像素,或矩阵中的一个元素)。
  • 块 (Block):一组线程的集合。一个 Block 内的线程运行在同一个流式多处理器 (SM) 上。关键点在于:同一个 Block 内的线程可以通过极快的“共享内存”进行协作和同步(__syncthreads())
  • 网格 (Grid):所有执行同一个内核函数(Kernel)的 Block 的集合。Grid 涵盖了整个计算任务。

2. 内存模型:速度与容量的权衡

GPU 的内存架构比 CPU 更为复杂,理解它对于性能优化至关重要:

  • 寄存器 (Registers):最快。每个线程私有,用于存储局部变量。数量有限,用多了会溢出到慢速内存。
  • 共享内存 (Shared Memory):极快(L1 缓存级别)。属于 Block 私有,是线程间通信的桥梁。优化 CUDA 程序的核心往往在于如何高效利用共享内存来减少全局内存访问。
  • 全局内存 (Global Memory):较慢(显存,如 24GB GDDR6X)。所有线程可见,容量大但延迟高。
  • 常量内存 (Constant Memory):快(有缓存)。用于存储只读参数,适合广播给所有线程。

编写高效 CUDA 代码的秘诀,就是尽可能让数据停留在寄存器和共享内存中,减少对全局内存的访问。

Go + CUDA 实战——跨越鸿沟

理解了原理,现在让我们动手。我们将构建一个完整的 Go 项目,利用 GPU 并行计算两个矩阵的乘积。这个过程需要借助 CGO 作为桥梁。

1. 项目目录结构

go-cuda-cgo-demo/
├── main.go       # Go 主程序 (CGO 入口,负责内存分配和调度)
├── matrix.cu     # CUDA 内核代码 (在 GPU 上运行的 C++ 代码)
└── matrix.h      # C 头文件 (声明导出函数,供 CGO 识别)

2. 编写 CUDA 内核 (matrix.cu)

这是在 GPU 上运行的核心代码。我们定义一个 matrixMulKernel,每个线程利用自己的坐标 (x, y) 计算结果矩阵中的一个元素。

// matrix.cu
#include <cuda_runtime.h>
#include <stdio.h>

// CUDA Kernel: 每个线程计算 C[row][col] 的值
__global__ void matrixMulKernel(float *a, float *b, float *c, int width) {
    // 根据 Block ID 和 Thread ID 计算当前线程的全局坐标
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;

    if (row < width && col < width) {
        float sum = 0;
        // 计算点积
        for (int k = 0; k < width; k++) {
            sum += a[row * width + k] * b[k * width + col];
        }
        c[row * width + col] = sum;
    }
}

extern "C" {
    // 供 Go 调用的 C 包装函数
    // 负责显存分配、数据拷贝和内核启动
    void runMatrixMul(float *h_a, float *h_b, float *h_c, int width) {
        int size = width * width * sizeof(float);
        float *d_a, *d_b, *d_c;

        // 1. 分配 GPU 显存 (Device Memory)
        cudaMalloc((void **)&d_a, size);
        cudaMalloc((void **)&d_b, size);
        cudaMalloc((void **)&d_c, size);

        // 2. 将数据从 Host (CPU内存) 复制到 Device (GPU显存)
        // 这一步通常是性能瓶颈,应尽量减少
        cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);

        // 3. 定义 Grid 和 Block 维度
        // 每个 Block 包含 16x16 = 256 个线程
        dim3 threadsPerBlock(16, 16);
        // Grid 包含足够多的 Block 以覆盖整个矩阵
        dim3 numBlocks((width + threadsPerBlock.x - 1) / threadsPerBlock.x,
                       (width + threadsPerBlock.y - 1) / threadsPerBlock.y);

        // 4. 启动内核!成千上万个线程开始并行计算
        matrixMulKernel<<<numBlocks, threadsPerBlock>>>(d_a, d_b, d_c, width);

        // 5. 将计算结果从 Device 传回 Host
        cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

        // 6. 释放 GPU 内存
        cudaFree(d_a);
        cudaFree(d_b);
        cudaFree(d_c);
    }
}

3. 定义 C 头文件 (matrix.h)

// matrix.h
#ifndef MATRIX_H
#define MATRIX_H

void runMatrixMul(float *a, float *b, float *c, int width);

#endif

4. 编写 Go 主程序 (main.go)

在 Go 代码中,我们准备数据,并通过 CGO 调用 runMatrixMul。

// go-cuda-cgo-demo/main.go
package main

/*
#cgo LDFLAGS: -L. -lmatrix -L/usr/local/cuda/lib64 -lcudart
#include "matrix.h"
*/
import "C"
import (
    "fmt"
    "math/rand"
    "time"
    "unsafe"
)

const width = 1024 // 矩阵大小 1024x1024,共 100万次计算

func main() {
    size := width * width
    h_a := make([]float32, size)
    h_b := make([]float32, size)
    h_c := make([]float32, size)

    // 初始化矩阵数据
    rand.Seed(time.Now().UnixNano())
    for i := 0; i < size; i++ {
        h_a[i] = rand.Float32()
        h_b[i] = rand.Float32()
    }

    fmt.Printf("Starting Matrix Multiplication (%dx%d) on GPU...\n", width, width)
    start := time.Now()

    // 调用 CUDA 函数
    // 使用 unsafe.Pointer 获取切片的底层数组指针,传递给 C
    C.runMatrixMul(
        (*C.float)(unsafe.Pointer(&h_a[0])),
        (*C.float)(unsafe.Pointer(&h_b[0])),
        (*C.float)(unsafe.Pointer(&h_c[0])),
        C.int(width),
    )

    // 注意:在更复杂的场景中,需要使用 runtime.KeepAlive(h_a)
    // 来确保 Go GC 不会在 CGO 调用期间回收切片内存。

    elapsed := time.Since(start)
    fmt.Printf("Done. Time elapsed: %v\n", elapsed)

    // 简单验证:检查左上角元素
    fmt.Printf("Result[0][0] = %f\n", h_c[0])
}

5. 编译与运行

前提:确保你的机器安装了 NVIDIA Driver 和 CUDA Toolkit。nvcc是CUDA编译器工具链,可以将基于CUDA的代码翻译为GPU机器码。

步骤一:编译 CUDA 代码

nvcc -c matrix.cu -o matrix.o
ar rcs libmatrix.a matrix.o

步骤二:编译 Go 程序

# 链接本地的 libmatrix.a 和系统的 CUDA 运行时库
go build -o gpu-cgo-demo main.go

步骤三:运行

./gpu-cgo-demo

预期输出:

Starting Matrix Multiplication (1024x1024) on GPU...
Done. Time elapsed: 611.815451ms
Result[0][0] = 262.440918

性能优化——从能用到极致

代码跑通只是第一步。Sam 推荐使用 NVIDIA 的 Nsight Systems (nsys) 来进行性能分析。你会发现,虽然 GPU 计算极快,但PCIe 总线的数据传输往往是最大的瓶颈

优化黄金法则:

  1. 减少传输:PCIe 很慢。尽量一次性将所有数据传给 GPU,让其进行多次计算,最后再取回结果。
  2. 利用共享内存 (Shared Memory):Block 内的共享内存比全局显存快得多。在矩阵乘法中,可以利用它实现分块算法 (Tiling),将小块矩阵加载到共享内存中复用,从而大幅减少显存带宽压力。

小结:Gopher 的新武器

Go + CUDA 的组合,为 Go 语言打开了一扇通往高性能计算的大门。它证明了 Go 不仅是编写微服务的利器,同样可以成为驾驭底层硬件、构建计算密集型应用的强大工具。如果你正在处理大规模数据,不妨尝试将计算任务卸载给 GPU,你会发现,那个熟悉的蓝色 Gopher,也能拥有令人惊叹的爆发力。

资料链接:

  • https://www.youtube.com/watch?v=d1R8BS-ccNk
  • https://sam-burns.com/posts/gophercon-25-go-faster/#gophercon-2025-new-york

本文涉及的示例源码可以在这里下载。

附录:告别 CGO?尝试 PureGo 的无缝集成

虽然 CGO 是连接 Go 和 C/C++ 的标准桥梁,但它也带来了编译速度变慢、工具链依赖等问题。有没有一种更“纯粹”的 Go 方式?

答案是有的。借助 PureGo 库,我们可以在不开启 CGO 的情况下,直接加载动态链接库 (.so / .dll) 并调用其中的符号。

让我们看看如何用 PureGo 重写上面的 main.go。

1. 准备动态库

首先,我们需要将 CUDA 代码编译为共享对象 (.so),而不是静态库。

# 编译为共享库 libmatrix.so
nvcc -shared -Xcompiler -fPIC matrix.cu -o libmatrix.so

2. 编写 PureGo 版主程序 (go-cuda-purego-demo/main.go)

// go-cuda-purego-demo/main.go
package main

import (
    "fmt"
    "math/rand"
    "runtime"
    "time"

    "github.com/ebitengine/purego"
)

const width = 1024

func main() {
    // 1. 加载动态库
    // 注意:在运行时,libmatrix.so 和 libcuder.so 必须在 LD_LIBRARY_PATH 中
    libMatrix, err := purego.Dlopen("libmatrix.so", purego.RTLD_NOW|purego.RTLD_GLOBAL)
    if err != nil {
        panic(err)
    }

    // 还需要加载 CUDA 运行时库,因为 libmatrix 依赖它
    _, err = purego.Dlopen("/usr/local/cuda/lib64/libcudart.so", purego.RTLD_NOW|purego.RTLD_GLOBAL)
    if err != nil {
        panic(err)
    }

    // 2. 注册 C 函数符号
    var runMatrixMul func(a, b, c *float32, w int)
    purego.RegisterLibFunc(&runMatrixMul, libMatrix, "runMatrixMul")

    // 3. 准备数据 (与 CGO 版本相同)
    size := width * width
    h_a := make([]float32, size)
    h_b := make([]float32, size)
    h_c := make([]float32, size)

    rand.Seed(time.Now().UnixNano())
    for i := 0; i < size; i++ {
        h_a[i] = rand.Float32()
        h_b[i] = rand.Float32()
    }

    fmt.Println("Starting Matrix Multiplication via PureGo...")
    start := time.Now()

    // 4. 直接调用!无需 CGO 类型转换
    runMatrixMul(&h_a[0], &h_b[0], &h_c[0], width)

    // 5. 极其重要:保持内存存活
    // PureGo 调用是纯汇编实现,Go GC 无法感知堆栈上的指针引用
    // 必须显式保活,否则在计算期间 h_a 等可能被 GC 回收!
    runtime.KeepAlive(h_a)
    runtime.KeepAlive(h_b)
    runtime.KeepAlive(h_c)

    fmt.Printf("Done. Time: %v\n", time.Since(start))
    fmt.Printf("Result[0][0] = %f\n", h_c[0])
}

3. 运行

# 无需 CGO,直接在go-cuda-purego-demo下运行
# 确保当前目录在 LD_LIBRARY_PATH 中
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.
CGO_ENABLED=0 go run main.go
Starting Matrix Multiplication via PureGo...
Done. Time: 584.397195ms
Result[0][0] = 260.088806

优势

  • 编译飞快:没有 CGO 的编译开销。
  • 零外部依赖:编译环境不需要安装 GCC 或 CUDA Toolkit,只要运行时环境有 .so 即可。这对于在轻量级 CI/CD 环境中构建分发包非常有用。

注意:PureGo 方案虽然优雅,但也失去了 CGO 的部分类型安全检查,且需要开发者更小心地管理内存生命周期 (runtime.KeepAlive)。


你的“算力”狂想

Go + GPU 的组合,打破了我们对 Go 应用场景的想象边界。在你的业务场景中,有没有哪些计算密集型的任务(比如图像处理、复杂推荐算法、密码学计算)是目前 CPU 跑不动的?你是否会考虑用这种“混合动力”方案来重构它?

欢迎在评论区分享你的脑洞或实战计划! 让我们一起探索 Go 的算力极限。

如果这篇文章为你打开了高性能计算的大门,别忘了点个【赞】和【在看】,并转发给那个天天喊着“CPU 跑满了”的同事!


还在为“复制粘贴喂AI”而烦恼?我的新专栏 AI原生开发工作流实战 将带你:

  • 告别低效,重塑开发范式
  • 驾驭AI Agent(Claude Code),实现工作流自动化
  • 从“AI使用者”进化为规范驱动开发的“工作流指挥家”

扫描下方二维码,开启你的AI原生开发之旅。


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

AI 时代,Go 语言会“失宠”还是“封神”?—— GopherCon 2025 圆桌深度复盘

本文永久链接 – https://tonybai.com/2026/01/20/ai-and-go-opportunities-and-challenges

大家好,我是Tony Bai。

在 AI 的滔天巨浪面前,每一位 Go 开发者心中或许都曾闪过一丝不安:Python 似乎统治了一切,我的 Go 语言技能树还值钱吗?AI 会取代我写代码吗?我该如何在这个喧嚣的时代保持清醒?

GopherCon 2025 的压轴圆桌会议上,一场名为“AI 与 Go:机遇与挑战”的深度对话给出了答案。

嘉宾阵容堪称豪华(从左二到右分别是):

  • Ian Cottrell: Google工程师,现从事 AI Agent 开发
  • Katie Hawkman: 前 Go 团队成员,现 Mercari 平台工程师
  • David Soria Parra: Anthropic 技术专家,MCP (Model Context Protocol) 联合创始人
  • Jaana Dogan: 前 Go团队成员,Google Gemini Serving 团队专家, adk-go项目成员
  • Samir Ajmani: Google Go 团队工程总监

他们没有贩卖焦虑,也没有盲目吹捧,而是用冷静、务实的工程师视角,为我们描绘了 Go 在 AI 时代的真实版图。

Go 的新机遇:AI 基础设施的“基石”

当被问及“Go 能提供什么 Python以及其他编程语言 无法提供的价值”时,嘉宾们的回答出奇一致:生产级的可靠性与并发能力。

Samir Ajmani 提出了一个精准的洞察:Go 的崛起得益于云原生时代的爆发,而 AI 正在带来“第二次云原生机遇”。

  • 现状:目前的 AI/ML 基础设施大量依赖 Python,适合快速原型和实验。
  • 痛点:当这些原型需要走向大规模生产,需要处理高并发推理、构建复杂的 Agent 编排、或者实现像 MCP (Model Context Protocol) 这样需要高度可靠性的协议时,Python 的动态特性和性能瓶颈开始显现。
  • Go 的位置:Go 语言天生的高并发模型、静态类型安全、以及构建大规模分布式系统的基因,使其成为构建 AI 生产基础设施(Serving, Orchestration, Agent Protocols)的完美选择。

Katie 分享了一个真实案例:她在黑客马拉松中选择用 Go 而非 TypeScript 来编写 MCP Server,因为 Go 的代码在处理复杂协议逻辑时更易读、更易维护。

David(Anthropic)就个人经验和观察,认为Go 是目前AI最擅长生成的语言代码之一,这也是Go的一大优势!

Python 也许是 AI 的“训练语言”,但 Go 有望成为 AI 的“运行语言”

职业焦虑:AI 会取代我们吗?

面对“AI 取代程序员”的言论,嘉宾们的态度是——“这只是另一种生产力工具,它改变了工作方式,但提升了人的价值。”

  • Samir Ajmani:未来的软件构建方式可能会变成“组件组装”。但这依然需要懂系统设计、安全性和可靠性的专业人士来构建这些高质量的组件。对于初级开发者,门槛确实变高了(简单的代码生成不再是技能壁垒),但对于具备系统思维的工程师,这是最好的时代。
  • Jaana Dogan (Google):她提出了一个令人耳目一新的视角——“代码写得快了,不仅没让我失业,反而让我更强大了。” AI 极大地缩短了编码时间,这意味着工程师可以更快地去“连接点” (connect the dots):将孤立的组件串联成系统,与更多人协作,验证更多设计想法。个人的产出能力被放大了,你不再是一个单纯的“螺丝钉制造者”,而更容易成为一名“系统架构师”。
  • David Suryapara (Anthropic):作为一名非 Go 核心开发者,David 的观察更为冷静。他认为,纯粹的“代码编写”技能(例如熟练背诵 API、手写 CSS)确实面临贬值。但核心工程能力——如拆解复杂需求、设计分布式系统、处理边缘情况——将变得前所未有的重要。 AI 抬高了入行的地板,但也让那些拥有深厚解决问题能力的工程师变得更加不可替代。
  • Katie Hawkman:写代码从来不是工作中“最难”的部分,而是“最有趣”的部分。真正的难点在于——如何渐进式交付?如何设计良好的 UX?如何优化系统性能?这些是 AI 短期内无法完全替代的工程智慧。
  • Ian Cottrell:我有 40 年的开发经验,每一次生产力工具的飞跃(从汇编到 C,从 IDE 到自动补全),人们都说“不需要程序员了”。结果呢?我们的需求量反而更大了。我们只是在提升期望值,尝试解决更难的问题。

不要试图成为每一个 AI 工具的专家。选择一个工具(如 Cursor 或 Claude Code),深入掌握它,让它服务于你的工作流,而不是被它淹没。

理性审视:算力、能源与负责任的 AI

主持人提出了一个尖锐的问题:在区块链曾因高能耗饱受诟病之后,我们该如何理性看待 AI 巨大的算力和能源消耗?作为开发者,我们该如何权衡使用 AI 工具的成本?

嘉宾们的回答,揭示了工程优化在 AI 时代的巨大潜力:

  • Samir Ajmani (Google) 分享了一个令人振奋的实验:Go 团队尝试将 MCP 支持集成到 Go 语言服务器 (LSP) 中。结果发现,当 AI 能够直接调用精确的工具(Tools)而不是在那“空想”时,任务完成率提高了,延迟降低了,最重要的是——Token 消耗量减少了近 50%。 这意味着,通过优秀的工程工具(如 Go),我们可以显著降低 AI 的运行成本和碳排放。
  • Jaana Dogan (Google) 认为我们正处于优化的早期阶段。就像当年的数据库优化一样,模型推理 (Inference) 的效率优化将是接下来的重头戏。缓存、量化、专用硬件,这些工程手段将大幅抵消模型增长带来的成本。
  • David Suryapara (Anthropic) 提到了“小模型与蒸馏”。我们不需要每次都动用最昂贵、最慢的“超大模型”来解决所有问题。未来,针对特定领域(如代码生成)进行微调和蒸馏的小模型,将在效能和成本之间找到完美的平衡点。

不要盲目堆砌算力。“负责任的 AI”不仅是道德要求,更是工程优化的必然方向。 用更少的 Token 做更多的事,这本身就是 Go 开发者擅长的“资源优化”技能的延伸。

务实派的生存指南:过滤噪音,回归本质

在 AI 炒作的喧嚣中,如何保持清醒?

  1. 从“小”开始:不要被“AGI 即将到来”的宏大叙事吓倒。像 Katie 建议的那样,承认自己是初学者,哪怕是 MCP 的创始人也说“现在没有所谓的专家”。放下包袱,去尝试写一个简单的 Agent,去用 Go 写一个 MCP Server。
  2. 关注“确定性”:Jaana 和 Ian 都提到,AI 模型本质上是概率性的(非确定性),而工程系统需要确定性。Go 语言强大的静态分析、测试工具链和类型系统,是约束 AI 幻觉、构建可靠系统的最佳防线。用 Go 的“确定性”去包裹 AI 的“不确定性”,是未来的核心工程模式之一。
  3. 解决实际问题:不要为了 AI 而 AI。如果老板让你“加点 AI 进去”,试着去寻找那些真正能通过 AI 提升效率的痛点(比如自动化文档更新、复杂日志分析),而不是生搬硬套。

小结:Go 社区的“绿地”时刻

这场圆桌会议传递出的最强烈信号是:乐观

我们正处于一个类似于 2013 年 Docker 诞生前夜的时刻。AI 领域的“Kubernetes”、“Prometheus”还没有被写出来。这片巨大的空白,正是 Go 开发者施展拳脚的“绿地” (Greenfield)。

正如 Samir 所言:

“如果我想让 AI 真正能够与现实世界进行交易(比如订购 Pizza 并且真的送到),这中间需要大量的、可靠的基础设施。而 Go,是构建这一层的绝佳语言。”

所以,Gopher 们,别慌。带上你的并发模型,带上你的工程智慧,去构建 AI 时代的钢铁地基吧。

资料链接:https://www.youtube.com/watch?v=r40Mwdvg38M


你的 AI 实践

听了这些顶级专家的观点,你是否对 Go 在 AI 时代的未来更有信心了?在你目前的开发工作中,是否已经开始尝试用 Go 构建 AI 应用或基础设施?你认为 Go 在 AI 领域最大的短板是什么?

欢迎在评论区分享你的实战经验或困惑!让我们一起探索 Go + AI 的无限可能。

如果这篇文章为你扫除了职业焦虑,别忘了点个【赞】和【在看】,并转发给身边迷茫的 Gopher 朋友!


还在为“复制粘贴喂AI”而烦恼?我的新专栏 AI原生开发工作流实战 将带你:

  • 告别低效,重塑开发范式
  • 驾驭AI Agent(Claude Code),实现工作流自动化
  • 从“AI使用者”进化为规范驱动开发的“工作流指挥家”

扫描下方二维码,开启你的AI原生开发之旅。


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 AI原生开发工作流实战 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com
这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats