标签 vpn 下的文章

Hello,WireGuard

2020年1月28日,Linux之父Linus Torvalds正式将WireGuard merge到Linux 5.6版本内核主线

img{512x368}

图:WireGuard被加入linux kernel 5.6主线的commit log

这意味着在Linux 5.6内核发布时,linux在内核层面将原生支持一个新的VPN协议栈:WireGuard

img{512x368}

图:WireGuard Logo

一. VPN与WireGuard的创新

VPN,全称Virtual Private Network(虚拟专用网络)。提起VPN,大陆的朋友想到的第一件事就是fan qiang。其实fan qiang只是VPN的一个“小众”应用罢了^_^,企业网络才是VPN真正施展才能的地方。VPN支持在不安全的公网上建立一条加密的、安全的到企业内部网络的通道(隧道tunnel),这就好比专门架设了一个专用网络那样。在WireGuard出现之前,VPN的隧道协议主要有PPTPL2TPIPSec等,其中PPTP和L2TP协议工作在OSI模型的第二层,又称为二层隧道协议;IPSec是第三层隧道协议。

既然已经有了这么多的VPN协议,那么Why WireGuard?

WireGuard的作者Jason A. DonenfeldWireGuard官网给出了很明确地理由:

  • 简单、易用、无连接、无状态:号称目前最易用和最简单的VPN解决方案

WireGuard可以像SSH一样易于配置和部署。只需交换非常简单的公钥就可以建立VPN连接,就像交换SSH密钥一样,其余所有由WireGuard透明处理。并且WireGuard建立的VPN连接是基于UDP的,无需建立和管理连接,无需关心和管理状态的。

  • 先进加密协议

WireGuard充分利用安全领域和密码学在这些年的最新成果,使用noise frameworkCurve25519ChaCha20Poly1305BLAKE2SipHash24等构建WireGuard的安全方案。

  • 最小的攻击面(最少代码实现)

WireGuard的内核模块c代码仅不足5k行,便于代码安全评审。也使得WireGuard的实现更不容易被攻击(代码量少,理论上漏洞相对于庞大的代码集合而言也会少许多)。

  • 高性能

密码学最新成果带来的高速机密原语和WireGuard的内核驻留机制,使其相较于之前的VPN方案更具性能优势。

以上这些理由,同时也是WireGuard这个协议栈的特性。

这么说依然很抽象,我们来实操一下,体验一下WireGuard的简洁、易用、安全、高效。

二. WireGuard安装和使用

WireGuard将在linux 5.6内核中提供原生支持,也就是说在那之前,我们还无法直接使用WireGuard,安装还是不可避免的。在我的实验环境中有两台Linux VPS主机,都是ubuntu 18.04,内核都是4.15.0。因此我们需要首先添加WireGuard的ppa仓库:

sudo add-apt-repository ppa:wireguard/wireguard

更新源后,即可通过下面命令安装WireGuard:

sudo apt-get update

sudo apt-get install wireguard

安装的WireGuard分为两部分:

  • WireGuard内核模块(wireguard.ko),这部分通过动态内核模块技术DKMS安装到ubuntu的内核模块文件目录下:
$ ls /lib/modules/4.15.0-29-generic/updates/dkms/
wireguard.ko

  • 用户层的命令行工具

类似于内核netfilter和命令行工具iptables之间关系,wireguard.ko对应的用户层命令行工具wireguard-tools:wg、wg-quick被安装到/usr/bin下面了:

$ ls -t /usr/bin|grep wg|head -n 2
wg
wg-quick

1. peer to peer vpn

在两个linux Vps上都安装完WireGuard后,我们就可以在两个节点(peer)建立虚拟专用网络(VPN)了。我们分为称两个linux节点为peer1和peer2:

img{512x368}

图:点对点wireguard通信图

就像上图那样,我们只分别需要在peer1和peer2建立/etc/wireguard/wg0.conf

peer1的/etc/wireguard/wg0.conf

[Interface]
PrivateKey = {peer1's privatekey}
Address = 10.0.0.1
ListenPort = 51820

[Peer]
PublicKey = {peer2's publickey}
EndPoint = {peer2's ip}:51820
AllowedIPs = 10.0.0.2/32

peer2的/etc/wireguard/wg0.conf

[Interface]
PrivateKey = {peer2's privatekey}
Address = 10.0.0.2
ListenPort = 51820

[Peer]
PublicKey = {peer1's publickey}
EndPoint = {peer1's ip}:51820
AllowedIPs = 10.0.0.1/32

我们看到每个peer上WireGuard所需的配置文件wg0.conf包含两大部分:

  • [Interface]部分

    • PrivateKey – peer自身的privatekey

    • Address – peer的wg0接口在vpn网络中绑定的路由ip范围,在上述例子中仅绑定了一个ip地址

    • ListenPort – wg网络协议栈监听UDP端口

  • [Peer]部分(描述vpn网中其他peer信息,一个wg0配置文件中显然可以配置多个Peer部分)

    • PublicKey – 该peer的publickey

    • EndPoint – 该peer的wg网路协议栈地址(ip+port)

    • AllowedIPs – 允许该peer发送过来的wireguard载荷中的源地址范围。同时本机而言,这个字段也会作为本机路由表中wg0绑定的ip范围。

每个Peer自身的privatekey和publickey可以通过WireGuard提供的命令行工具生成:

$ wg genkey | tee privatekey | wg pubkey > publickey
$ ls
privatekey  publickey

注:这两个文件可以生成在任意路径下,我们要的是两个文件中内容。

在两个peer上配置完/etc/wireguard/wg0.conf配置文件后,我们就可以使用下面命令在peer1和peer2之间建立一条双向加密VPN隧道了:

peer1:

$ sudo wg-quick up wg0
[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.0.0.1 dev wg0
[#] ip link set mtu 1420 up dev wg0
[#] ip -4 route add 10.0.0.2/32 dev wg0

peer2:

$ sudo wg-quick up wg0
[#] ip link add wg0 type wireguard
[#] wg setconf wg0 /dev/fd/63
[#] ip -4 address add 10.0.0.2 dev wg0
[#] ip link set mtu 1420 up dev wg0
[#] ip -4 route add 10.0.0.1/32 dev wg0

执行上述命令,每个peer会增加一个network interface dev: wg0,并在系统路由表中增加一条路由,以peer1为例:

$ ip a

... ...

4: wg0: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1420 qdisc noqueue state UNKNOWN group default qlen 1000
    link/none
    inet 10.0.0.1/32 scope global wg0
       valid_lft forever preferred_lft forever

$ ip route
default via 172.21.0.1 dev eth0 proto dhcp metric 100
10.0.0.2 dev wg0 scope link
... ...

现在我们来测试两个Peer之间的连通性。WireGuard的peer之间是对等的,谁发起的请求谁就是client端。我们在peer1上ping peer2,在peer2上我们用tcpdump抓wg0设备的包:

Peer1:

$ ping -c 3 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=34.9 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=34.7 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=34.6 ms

--- 10.0.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 34.621/34.781/34.982/0.262 ms

Peer2:

# tcpdump -i wg0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wg0, link-type RAW (Raw IP), capture size 262144 bytes
13:29:52.659550 IP 10.0.0.1 > instance-cspzrq3u: ICMP echo request, id 20580, seq 1, length 64
13:29:52.659603 IP instance-cspzrq3u > 10.0.0.1: ICMP echo reply, id 20580, seq 1, length 64
13:29:53.660463 IP 10.0.0.1 > instance-cspzrq3u: ICMP echo request, id 20580, seq 2, length 64
13:29:53.660495 IP instance-cspzrq3u > 10.0.0.1: ICMP echo reply, id 20580, seq 2, length 64
13:29:54.662201 IP 10.0.0.1 > instance-cspzrq3u: ICMP echo request, id 20580, seq 3, length 64
13:29:54.662234 IP instance-cspzrq3u > 10.0.0.1: ICMP echo reply, id 20580, seq 3, length 64

我们看到peer1和peer2经由WireGuard建立的vpn实现了连通:在peer2上ping peer1(10.0.0.1)亦得到相同结果。

这时如果我们如果在peer2(vpn ip: 10.0.0.2)上启动一个http server(监听0.0.0.0:9090):

//httpserver.go
package main

import "net/http"

func index(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("hello, wireguard\n"))
}

func main() {
    http.Handle("/", http.HandlerFunc(index))
    http.ListenAndServe(":9090", nil)
}

那么我们在peer1(vpn ip:10.0.0.1)去访问这个server:

$ curl http://10.0.0.2:9090
hello, wireguard

在peer2(instance-cspzrq3u)上的tcpdump显示(tcp握手+数据通信+tcp拆除):

14:15:05.233794 IP 10.0.0.1.43922 > instance-cspzrq3u.9090: Flags [S], seq 1116349511, win 27600, options [mss 1380,sackOK,TS val 3539789774 ecr 0,nop,wscale 7], length 0
14:15:05.233854 IP instance-cspzrq3u.9090 > 10.0.0.1.43922: Flags [S.], seq 3504538202, ack 1116349512, win 27360, options [mss 1380,sackOK,TS val 2842719516 ecr 3539789774,nop,wscale 7], length 0
14:15:05.268792 IP 10.0.0.1.43922 > instance-cspzrq3u.9090: Flags [.], ack 1, win 216, options [nop,nop,TS val 3539789809 ecr 2842719516], length 0
14:15:05.268882 IP 10.0.0.1.43922 > instance-cspzrq3u.9090: Flags [P.], seq 1:78, ack 1, win 216, options [nop,nop,TS val 3539789809 ecr 2842719516], length 77
14:15:05.268907 IP instance-cspzrq3u.9090 > 10.0.0.1.43922: Flags [.], ack 78, win 214, options [nop,nop,TS val 2842719551 ecr 3539789809], length 0
14:15:05.269514 IP instance-cspzrq3u.9090 > 10.0.0.1.43922: Flags [P.], seq 1:134, ack 78, win 214, options [nop,nop,TS val 2842719552 ecr 3539789809], length 133
14:15:05.304147 IP 10.0.0.1.43922 > instance-cspzrq3u.9090: Flags [.], ack 134, win 224, options [nop,nop,TS val 3539789845 ecr 2842719552], length 0
14:15:05.304194 IP 10.0.0.1.43922 > instance-cspzrq3u.9090: Flags [F.], seq 78, ack 134, win 224, options [nop,nop,TS val 3539789845 ecr 2842719552], length 0
14:15:05.304317 IP instance-cspzrq3u.9090 > 10.0.0.1.43922: Flags [F.], seq 134, ack 79, win 214, options [nop,nop,TS val 2842719586 ecr 3539789845], length 0
14:15:05.339035 IP 10.0.0.1.43922 > instance-cspzrq3u.9090: Flags [.], ack 135, win 224, options [nop,nop,TS val 3539789880 ecr 2842719586], length 0

如果要拆除这个vpn,只需在每个peer上分别执行如下命令:

$ sudo wg-quick down wg0
[#] ip link delete dev wg0

2. peer to the local network of other peer

上面两个peer虽然实现了点对点的连通,但是如果我们想从peer1访问peer2所在的局域网中的另外一台机器(这显然是vpn最常用的应用场景),如下面示意图:

img{512x368}

图:从一个peer到另外一个peer所在局域网的节点的通信图

基于目前的配置是否能实现呢?我们来试试。首先我们在peer1上要将192.168.1.0/24网段的路由指到wg0上,这样我们在peer1上ping或curl 192.168.1.123:9090,数据才能被交给wg0处理并通过vpn网络送出,修改peer1上的wg0.conf:

// peer1's /etc/wireguard/wg0.conf

... ...
[Peer]
PublicKey = {peer2's publickey}
EndPoint = peer2's ip:51820
AllowedIPs = 10.0.0.2/32,192.168.1.0/24

重启peer1上的wg0使上述配置生效。然后我们尝试在peer1上ping 192.168.1.123:

$ ping -c 3 192.168.1.123
PING 192.168.1.123 (192.168.1.123) 56(84) bytes of data.

--- 192.168.1.123 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2038ms

我们在peer2上的tcpdump显示:

# tcpdump -i wg0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wg0, link-type RAW (Raw IP), capture size 262144 bytes
14:33:38.393520 IP 10.0.0.1 > 192.168.1.123: ICMP echo request, id 30426, seq 1, length 64
14:33:39.408083 IP 10.0.0.1 > 192.168.1.123: ICMP echo request, id 30426, seq 2, length 64
14:33:40.432079 IP 10.0.0.1 > 192.168.1.123: ICMP echo request, id 30426, seq 3, length 64

我们看到peer2收到来自10.0.0.1的到192.168.1.123的ping包都没有对应的回包,通信失败。Why?我们分析一下。

peer2在51820端口收到WireGuard包后,去除wireguard包的包裹,露出真实数据包。真实数据包的目的ip地址为192.168.1.123,该地址并非peer2自身地址(其自身局域网地址为192.168.1.10)。既然不是自身地址,就不能送到上层协议栈(tcp)处理,那么另外一条路是forward(转发)出去。但是是否允许转发么?显然从结果来看,从wg0收到的消息无权转发,于是消息丢弃,这就是没有回包和通信失败的原因。

为了支持转发(这是vpn常用场景的功能哦),我们需要为peer2的wg0.conf增加些转发配置:

// peer2's  wg0.conf

[Interface]

... ...
PostUp   = iptables -A FORWARD -i %i -j ACCEPT; iptables -A FORWARD -o %i -j ACCEPT; iptables -t nat -A POSTROUT  ING -o eth0 -j MASQUERADE
PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -D FORWARD -o %i -j ACCEPT; iptables -t nat -D POSTROUT  ING -o eth0 -j MASQUERADE

... ...

重启peer2的wg0。在peer2的内核层我们也要开启转发开关:

// /etc/sysctl.conf

net.ipv4.ip_forward=1

net.ipv6.conf.all.forwarding=1

执行下面命令临时生效:

# sysctl -p
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

接下来,我们再来测试一下连通性。我们在peer1上再次尝试ping 192.168.1.123

$ ping -c 3 192.168.1.123
PING 192.168.1.123 (192.168.1.123) 56(84) bytes of data.
64 bytes from 192.168.1.123: icmp_seq=1 ttl=46 time=200 ms
64 bytes from 192.168.1.123: icmp_seq=2 ttl=46 time=200 ms
64 bytes from 192.168.1.123: icmp_seq=3 ttl=46 time=200 ms

--- 192.168.1.123 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 200.095/200.239/200.396/0.531 ms

这回通了!peer2上的Tcpdump输出中也看到了回包:

14:49:58.808467 IP 10.0.0.1 > 192.168.1.123: ICMP echo request, id 402, seq 1, length 64
14:49:58.974035 IP 192.168.1.123 > 10.0.0.1: ICMP echo reply, id 402, seq 1, length 64
14:49:59.809747 IP 10.0.0.1 > 192.168.1.123: ICMP echo request, id 402, seq 2, length 64
14:49:59.975240 IP 192.168.1.123 > 10.0.0.1: ICMP echo reply, id 402, seq 2, length 64
14:50:00.810802 IP 10.0.0.1 > 192.168.1.123: ICMP echo request, id 402, seq 3, length 64
14:50:00.976202 IP 192.168.1.123 > 10.0.0.1: ICMP echo reply, id 402, seq 3, length 64

我们在192.168.1.123上运行上面的那个httpserver程序,再在peer1上用curl访问这个程序:

$ curl 192.168.1.123:9090
hello, wireguard

我们看到httpserver的应答成功返回。peer2上的tcpdump也抓到了整个通信过程:

14:50:36.437259 IP 10.0.0.1.47918 > 192.168.1.123.9090: Flags [S], seq 3235649864, win 27600, options [mss 1380,sackOK,TS val 101915019 ecr 0,nop,wscale 7], length 0
14:50:36.593554 IP 192.168.1.123.9090 > 10.0.0.1.47918: Flags [S.], seq 2420552016, ack 3235649865, win 28960, options [mss 1460,sackOK,TS val 2323314775 ecr 101915019,nop,wscale 7], length 0
14:50:36.628315 IP 10.0.0.1.47918 > 192.168.1.123.9090: Flags [.], ack 1, win 216, options [nop,nop,TS val 101915210 ecr 2323314775], length 0
14:50:36.628379 IP 10.0.0.1.47918 > 192.168.1.123.9090: Flags [P.], seq 1:84, ack 1, win 216, options [nop,nop,TS val 101915210 ecr 2323314775], length 83
14:50:36.784550 IP 192.168.1.123.9090 > 10.0.0.1.47918: Flags [.], ack 84, win 227, options [nop,nop,TS val 2323314822 ecr 101915210], length 0
14:50:36.784710 IP 192.168.1.123.9090 > 10.0.0.1.47918: Flags [P.], seq 1:134, ack 84, win 227, options [nop,nop,TS val 2323314822 ecr 101915210], length 133
14:50:36.820339 IP 10.0.0.1.47918 > 192.168.1.123.9090: Flags [.], ack 134, win 224, options [nop,nop,TS val 101915401 ecr 2323314822], length 0
14:50:36.820383 IP 10.0.0.1.47918 > 192.168.1.123.9090: Flags [F.], seq 84, ack 134, win 224, options [nop,nop,TS val 101915401 ecr 2323314822], length 0
14:50:36.977226 IP 192.168.1.123.9090 > 10.0.0.1.47918: Flags [F.], seq 134, ack 85, win 227, options [nop,nop,TS val 2323314870 ecr 101915401], length 0
14:50:37.011927 IP 10.0.0.1.47918 > 192.168.1.123.9090: Flags [.], ack 135, win 224, options [nop,nop,TS val 101915594 ecr 2323314870], length 0

3. WireGuard的用户层实现

在linux上,我们务必使用WireGuard的内核模式,这显然是最高效的。在macOS、Windows上,WireGuard无法以内核模块驻留模式运行,但WireGuard项目提供了WireGuard的用户层实现。其作者Jason A. Donenfeld亲自实现了Go语言版本的wireguard-go。macOS上使用的就是wireguard的Go实现。我们可以使用brew在macOS上按照WireGuard:

$brew install wireguard-tools

配置好/etc/wireguard/wg0.conf后(和linux上的配置方式一致),同样可以通过wg-quick命令启动wireguard:

$sudo wg-quick up wg0

wg-quick实际上会通过wireguard-go来实现linux wireguard在内核中完成的功能:

$ps -ef|grep wireguard

    0 57783     1   0  3:18下午 ttys002    0:00.01 wireguard-go utun

三. WireGuard性能如何

关于WireGuard性能如何,官方给出了一个性能基准测试的对比数据(相较于其他vpn网络栈):

img{512x368}

图:WireGuard性能与其他vpn网络栈的对比(来自官方截图)

我们看到和IPSec、OpenVPN相比,无论从吞吐还是延迟,WireGuard都领先不少。

我们这里用microsoft开源的带宽测试工具ethr来直观看一下走物理网络和走WireGuard VPN的带宽差别。

在peer2上运行:

$ ethr -s

然后在peer1上分别通过物理网络和VPN网络向peer2发起请求:

  • peer1 -> peer2 (物理网络)
$ ethr -c  peer2's ip
Connecting to host [peer2 ip], port 9999
[  6] local 172.21.0.5 port 46108 connected to  peer2 ip port 9999
- - - - - - - - - - - - - - - - - - - - - - -
[ ID]   Protocol    Interval      Bits/s
[  6]     TCP      000-001 sec     1.54M
[  6]     TCP      001-002 sec     1.54M
[  6]     TCP      002-003 sec     1.54M
[  6]     TCP      003-004 sec     1.54M
[  6]     TCP      004-005 sec     1.54M

.... ...

  • peer1 -> peer2 (vpn网络)
$ ethr -c 10.0.0.2
Connecting to host [10.0.0.2], port 9999
[  6] local 10.0.0.1 port 36010 connected to 10.0.0.2 port 9999
- - - - - - - - - - - - - - - - - - - - - - -
[ ID]   Protocol    Interval      Bits/s
[  6]     TCP      000-001 sec     1.79M
[  6]     TCP      001-002 sec      640K
[  6]     TCP      002-003 sec     1.15M
[  6]     TCP      003-004 sec      512K
[  6]     TCP      004-005 sec     1.02M
[  6]     TCP      005-006 sec     1.02M
[  6]     TCP      006-007 sec     1.02M

我们看到走vpn的带宽相当于走物理网络的66%(1.02/1.54)左右。这里peer1(腾讯云)、peer2(百度云)之间走的是互联网,而在局域网测试的效果可能更好(留给大家^_^)。

四. 小结

经过上面的实验,我们看到了WireGuard的配置的确十分简单,这也是我目前使用过的配置过程最为简单的vpn。随着linux kernel 5.6内置对WireGuard的原生支持,WireGuard在vpn领域势必会有更为广泛的应用。

在容器网络方面,目前WireGuard已经给出了跨容器的网络通信方案,基于wireguard的k8s cni网络插件wormhole可以让pod之间通过wireguard实现的overlay网络通信。

国外的tailscale公司正在实现一种基于Wireguard的mesh vpn网络,该网络以WireGuard为数据平面的承载体,该公司主要实现控制平面。该公司目前聚集了一些Go核心开发人员,这里就包括著名的go核心开发团队成员、net/http包的最初作者和当前维护者的Brad Fitzpatrick。

五. 参考资料


我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网上线了,感谢小伙伴们学习支持!

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/
smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

微博:https://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

ngrok原理浅析

之前在进行微信Demo开发时曾用到过ngrok这个强大的tunnel(隧道)工具,ngrok在其github官方页面上的自我诠释是 “introspected tunnels to localhost",这个诠释有两层含义:
1、可以用来建立public到localhost的tunnel,让居于内网主机上的服务可以暴露给public,俗称内网穿透。
2、支持对隧道中数据的introspection(内省),支持可视化的观察隧道内数据,并replay(重放)相关请求(诸如http请 求)。

因此ngrok可以很便捷的协助进行服务端程序调试,尤其在进行一些Web server开发中。ngrok更强大的一点是它支持tcp层之上的所有应用协议或者说与应用层协议无关。比如:你可以通过ngrok实现ssh登录到内 网主 机,也可以通过ngrok实现远程桌面(VNC)方式访问内网主机。

今天我们就来简单分析一下这款强大工具的实现原理。ngrok本身是用go语言实现的,需要go 1.1以上版本编译。ngrok官方代码最新版为1.7,作者似乎已经完成了ngrok 2.0版本,但不知为何迟迟不放出最新代码。因此这里我们就以ngrok 1.7版本源码作为原理分析的基础。

一、ngrok tunnel与ngrok部署

网络tunnel(隧道)对多数人都是很”神秘“的概念,tunnel种类很多,没有标准定义,我了解的也不多(日常工作较少涉及),这里也就不 深入了。在《HTTP权威指南》中有关于HTTP tunnel(http上承载非web流量)和SSL tunnel的说明,但ngrok中的tunnel又与这些有所不同。

ngrok实现了一个tcp之上的端到端的tunnel,两端的程序在ngrok实现的Tunnel内透明的进行数据交互。

ngrok分为client端(ngrok)和服务端(ngrokd),实际使用中的部署如下:

内网服务程序可以与ngrok client部署在同一主机,也可以部署在内网可达的其他主机上。ngrok和ngrokd会为建立与public client间的专用通道(tunnel)。

二、ngrok开发调试环境搭建

在学习ngrok代码或试验ngrok功能的时候,我们可能需要搭建一个ngrok的开发调试环境。ngrok作者在ngrok developer guide中给出了步骤:

$> git clone https://github.com/inconshreveable/ngrok
$> cd ngrok
$> make client
$> make server

make client和make server执行后,会建构出ngrok和ngrokd的debug版本。如果要得到release版本,请使用make release-clientmake release-server。debug版本与release版本的区别在于debug版本不打包 assets下的资源文件,执行时通过文件系统访问。

修改/etc/hosts文件,添加两行:

127.0.0.1 ngrok.me
127.0.0.1 test.ngrok.me

创建客户端配置文件debug.yml:

server_addr: ngrok.me:4443
trust_host_root_certs: false
tunnels:
      test:
        proto:
           http: 8080

不过要想让ngrok与ngrokd顺利建立通信,我们还得制作数字证书(自签发),源码中自带的证书是无法使用的,证书制作方法可参见《搭建自 己的ngrok服务》一文,相关原理可参考《Go和HTTPS》一文,这里就不赘述了。

我直接使用的是release版本(放在bin/release下),这样在执行命令时可以少传入几个参数:

启动服务端:
$> sudo ./bin/release/ngrokd -domain ngrok.me
[05/13/15 17:15:37] [INFO] Listening for public http connections on [::]:80
[05/13/15 17:15:37] [INFO] Listening for public https connections on [::]:443
[05/13/15 17:15:37] [INFO] Listening for control and proxy connections on [::]:4443

启动客户端:
$> ./bin/release/ngrok -config=debug.yml -log=ngrok.log -subdomain=test 8080

有了调试环境,我们就可以通过debug日志验证我们的分析了。

ngrok的源码结构如下:

drwxr-xr-x   3 tony  staff  102  3 31 16:09 cache/
drwxr-xr-x  16 tony  staff  544  5 13 17:21 client/
drwxr-xr-x   4 tony  staff  136  5 13 15:02 conn/
drwxr-xr-x   3 tony  staff  102  3 31 16:09 log/
drwxr-xr-x   4 tony  staff  136  3 31 16:09 main/
drwxr-xr-x   5 tony  staff  170  5 12 16:17 msg/
drwxr-xr-x   5 tony  staff  170  3 31 16:09 proto/
drwxr-xr-x  11 tony  staff  374  5 13 17:21 server/
drwxr-xr-x   7 tony  staff  238  3 31 16:09 util/
drwxr-xr-x   3 tony  staff  102  3 31 16:09 version/

main目录下的ngrok/和ngrokd/分别是ngrok和ngrokd main包,main函数存放的位置,但这里仅仅是一个stub。以ngrok为例:

// ngrok/src/ngrok/main/ngrok/ngrok.go
package main

import (
    "ngrok/client"
)

func main() {
    client.Main()
}

真正的“main”被client包的Main函数实现。

client/和server/目录分别对应ngrok和ngrokd的主要逻辑,其他目录(或包)都是一些工具类的实现。

三、第一阶段:Control Connection建立

在ngrokd的启动日志中我们可以看到这样一行:

[INFO] Listening for control and proxy connections on [::]:4443

ngrokd在4443端口(默认)监听control和proxy connection。Control Connection,顾名思义“控制连接”,有些类似于FTP协议的控制连接(不知道ngrok作者在设计协议时是否参考了FTP协议^_^)。该连接 只用于收发控制类消息。作为客户端的ngrok启动后的第一件事就是与ngrokd建立Control Connection,建立过程序列图如下:

前面提到过,ngrok客户端的实际entrypoint在ngrok/src/ngrok/client目录下,包名client,实际入口是 client.Main函数。

//ngrok/src/ngrok/client/main.go
func Main() {
    // parse options
    // set up logging
    // read configuration file
    …. …
    NewController().Run(config)
}

ngrok采用了MVC模式构架代码,这既包括ngrok与ngrokd之间的逻辑处理,也包括ngrok本地web页面(用于隧道数据的 introspection)的处理。

//ngrok/src/ngrok/client/controller.go
func (ctl *Controller) Run(config *Configuration) {

    var model *ClientModel

    if ctl.model == nil {
        model = ctl.SetupModel(config)
    } else {
        model = ctl.model.(*ClientModel)
    }
    // init the model
    // init web ui
    // init term ui
   … …
   ctl.Go(ctl.model.Run)
   … …
  
}

我们来继续看看model.Run都做了些什么。

//ngrok/src/ngrok/client/model.go
func (c *ClientModel) Run() {
    … …

    for {
        // run the control channel
        c.control()
        … …
        if c.connStatus == mvc.ConnOnline {
            wait = 1 * time.Second
        }

        … …
        c.connStatus = mvc.ConnReconnecting
        c.update()
    }
}

Run函数调用c.control来运行Control Connection的主逻辑,并在control connection断开后,尝试重连。

c.control是ClientModel的一个method,用来真正建立ngrok到ngrokd的control connection,并完成基于ngrok的鉴权(用户名、密码配置在配置文件中)。

//ngrok/src/ngrok/client/model.go
func (c *ClientModel) control() {
    … …
    var (
        ctlConn conn.Conn
        err     error
    )
    if c.proxyUrl == "" {
        // simple non-proxied case, just connect to the server
        ctlConn, err = conn.Dial(c.serverAddr, "ctl", c.tlsConfig)
    } else {……}
    … …

    // authenticate with the server
    auth := &msg.Auth{
        ClientId:  c.id,
        OS:        runtime.GOOS,
        Arch:      runtime.GOARCH,
        Version:   version.Proto,
        MmVersion: version.MajorMinor(),
        User:      c.authToken,
    }

    if err = msg.WriteMsg(ctlConn, auth); err != nil {
        panic(err)
    }

    // wait for the server to authenticate us
    var authResp msg.AuthResp
    if err = msg.ReadMsgInto(ctlConn, &authResp); err != nil {
        panic(err)
    }

    … …

    c.id = authResp.ClientId
    … ..
}

ngrok封装了connection相关操作,代码在ngrok/src/ngrok/conn下面,包名conn。

//ngrok/src/ngrok/conn/conn.go
func Dial(addr, typ string, tlsCfg *tls.Config) (conn *loggedConn, err error) {
    var rawConn net.Conn
    if rawConn, err = net.Dial("tcp", addr); err != nil {
        return
    }

    conn = wrapConn(rawConn, typ)
    conn.Debug("New connection to: %v", rawConn.RemoteAddr())

    if tlsCfg != nil {
        conn.StartTLS(tlsCfg)
    }

    return
}

ngrok首先创建一条TCP连接,并基于该连接创建了TLS client:

func (c *loggedConn) StartTLS(tlsCfg *tls.Config) {
    c.Conn = tls.Client(c.Conn, tlsCfg)
}

不过此时并未进行TLS的初始化,即handshake。handshake发生在ngrok首次向ngrokd发送auth消息(msg.WriteMsg, ngrok/src/ngrok/msg/msg.go)时,go标准库的TLS相关函数默默的完成这一handshake过程。我们经常遇到的ngrok证书验证失败等问题,就发生在该过程中。

在AuthResp中,ngrokd为该Control Connection分配一个ClientID,该ClientID在后续Proxy Connection建立时使用,用于关联和校验之用。

前面的逻辑和代码都是ngrok客户端的,现在我们再从ngrokd server端代码review一遍Control Connection的建立过程。

ngrokd的代码放在ngrok/src/ngrok/server下面,entrypoint如下:

//ngrok/src/ngrok/server/main.go
func Main() {
    // parse options
    opts = parseArgs()
    // init logging
    // init tunnel/control registry
    … …
    // start listeners
    listeners = make(map[string]*conn.Listener)

    // load tls configuration
    tlsConfig, err := LoadTLSConfig(opts.tlsCrt, opts.tlsKey)
    if err != nil {
        panic(err)
    }
    // listen for http
    // listen for https
    … …

    // ngrok clients
    tunnelListener(opts.tunnelAddr, tlsConfig)
}

ngrokd启动了三个监听,其中最后一个tunnelListenner用于监听ngrok发起的Control Connection或者后续的proxy connection,作者意图通过一个端口,监听两种类型连接,旨在于方便部署。

//ngrok/src/ngrok/server/main.go
func tunnelListener(addr string, tlsConfig *tls.Config) {
    // listen for incoming connections
    listener, err := conn.Listen(addr, "tun", tlsConfig)
    … …

    for c := range listener.Conns {
        go func(tunnelConn conn.Conn) {
            … …
            var rawMsg msg.Message
            if rawMsg, err = msg.ReadMsg(tunnelConn); err != nil {
                tunnelConn.Warn("Failed to read message: %v", err)
                tunnelConn.Close()
                return
            }
            … …
            switch m := rawMsg.(type) {
            case *msg.Auth:
                NewControl(tunnelConn, m)
            … …
            }
        }(c)
    }
}

从tunnelListener可以看到,当ngrokd在新建立的Control Connection上收到Auth消息后,ngrokd执行NewControl来处理该Control Connection上的后续事情。

//ngrok/src/ngrok/server/control.go
func NewControl(ctlConn conn.Conn, authMsg *msg.Auth) {
    var err error

    // create the object
    c := &Control{
        … …
    }

    // register the clientid
    … …
    // register the control
    … …

    // start the writer first so that
    // the following messages get sent
    go c.writer()

    // Respond to authentication
    c.out <- &msg.AuthResp{
        Version:   version.Proto,
        MmVersion: version.MajorMinor(),
        ClientId:  c.id,
    }

    // As a performance optimization,
    // ask for a proxy connection up front
    c.out <- &msg.ReqProxy{}

    // manage the connection
    go c.manager()
    go c.reader()
    go c.stopper()
}

在NewControl中,ngrokd返回了AuthResp。到这里,一条新的Control Connection建立完毕。

我们最后再来看一下Control Connection建立过程时ngrok和ngrokd的输出日志,增强一下感性认知:

ngrok Server:

[INFO] [tun:d866234] New connection from 127.0.0.1:59949
[DEBG] [tun:d866234] Waiting to read message
[DEBG] [tun:d866234] Reading message with length: 126
[DEBG] [tun:d866234] Read message {"Type":"Auth",
"Payload":{"Version":"2","MmVersion":"1.7","User":"","Password":"","OS":"darwin","Arch":"amd64","ClientId":""}}
[INFO] [ctl:d866234] Renamed connection tun:d866234
[INFO] [registry] [ctl] Registered control with id ac1d14e0634f243f8a0cc2306bb466af
[DEBG] [ctl:d866234] [ac1d14e0634f243f8a0cc2306bb466af] Writing message: {"Type":"AuthResp","Payload":{"Version":"2","MmVersion":"1.7","ClientId":"ac1d14e0634f243f8a0cc2306bb466af","Error":""}}

Client:

[INFO] (ngrok/log.Info:112) Reading configuration file debug.yml
[INFO] (ngrok/log.(*PrefixLogger).Info:83) [client] Trusting root CAs: [assets/client/tls/ngrokroot.crt]
[INFO] (ngrok/log.(*PrefixLogger).Info:83) [view] [web] Serving web interface on 127.0.0.1:4040
[INFO] (ngrok/log.Info:112) Checking for update
[DEBG] (ngrok/log.(*PrefixLogger).Debug:79) [view] [term] Waiting for update
[DEBG] (ngrok/log.(*PrefixLogger).Debug:79) [ctl:31deb681] New connection to: 127.0.0.1:4443
[DEBG] (ngrok/log.(*PrefixLogger).Debug:79) [ctl:31deb681] Writing message: {"Type":"Auth","Payload":{"Version":"2","MmVersion":"1.7","User":"","Password":"","OS":"darwin","Arch":"amd64","ClientId":""}}
[DEBG] (ngrok/log.(*PrefixLogger).Debug:79) [ctl:31deb681] Waiting to read message
(ngrok/log.(*PrefixLogger).Debug:79) [ctl:31deb681] Reading message with length: 120
(ngrok/log.(*PrefixLogger).Debug:79) [ctl:31deb681] Read message {"Type":"AuthResp","Payload":{"Version":"2","MmVersion":"1.7","ClientId":"ac1d14e0634f243f8a0cc2306bb466af","Error":""}}
[INFO] (ngrok/log.(*PrefixLogger).Info:83) [client] Authenticated with server, client id: ac1d14e0634f243f8a0cc2306bb466af

四、Tunnel Creation

Tunnel Creation是ngrok将配置文件中的tunnel信息通过刚刚建立的Control Connection传输给 ngrokd,ngrokd登记、启动相应端口监听(如果配置了remote_port或多路复用ngrokd默认监听的http和https端口)并返回相应应答。ngrok和ngrokd之间并未真正建立新连接。

我们回到ngrok的model.go,继续看ClientModel的control方法。在收到AuthResp后,ngrok还做了如下事情:

//ngrok/src/ngrok/client/model.go
 
   // request tunnels
    reqIdToTunnelConfig := make(map[string]*TunnelConfiguration)
    for _, config := range c.tunnelConfig {
        // create the protocol list to ask for
        var protocols []string
        for proto, _ := range config.Protocols {
            protocols = append(protocols, proto)
        }

        reqTunnel := &msg.ReqTunnel{
            … …
        }

        // send the tunnel request
        if err = msg.WriteMsg(ctlConn, reqTunnel); err != nil {
            panic(err)
        }

        // save request id association so we know which local address
        // to proxy to later
        reqIdToTunnelConfig[reqTunnel.ReqId] = config
    }

    // main control loop
    for {
        var rawMsg msg.Message
       
        switch m := rawMsg.(type) {
        … …
        case *msg.NewTunnel:
            … …

            tunnel := mvc.Tunnel{
                … …
            }

            c.tunnels[tunnel.PublicUrl] = tunnel
            c.connStatus = mvc.ConnOnline
           
            c.update()
        … …
        }
    }

ngrok将配置的Tunnel信息逐一以ReqTunnel消息发送给ngrokd以注册登记Tunnel,并在随后的main control loop中处理ngrokd回送的NewTunnel消息,完成一些登记索引工作。

ngrokd Server端对tunnel creation的处理是在NewControl的结尾处:

//ngrok/src/ngrok/server/control.go
func NewControl(ctlConn conn.Conn, authMsg *msg.Auth) {
    … …
    // manage the connection
    go c.manager()
    … …
}

func (c *Control) manager() {
    //… …

    for {
        select {
        case <-reap.C:
            … …

        case mRaw, ok := <-c.in:
            // c.in closes to indicate shutdown
            if !ok {
                return
            }

            switch m := mRaw.(type) {
            case *msg.ReqTunnel:
                c.registerTunnel(m)

            .. …
            }
        }
    }
}

Control的manager在收到ngrok发来的ReqTunnel消息后,调用registerTunnel进行处理。

// ngrok/src/ngrok/server/control.go
// Register a new tunnel on this control connection
func (c *Control) registerTunnel(rawTunnelReq *msg.ReqTunnel) {
    for _, proto := range strings.Split(rawTunnelReq.Protocol, "+") {
        tunnelReq := *rawTunnelReq
        tunnelReq.Protocol = proto

        c.conn.Debug("Registering new tunnel")
        t, err := NewTunnel(&tunnelReq, c)
        if err != nil {
            c.out <- &msg.NewTunnel{Error: err.Error()}
            if len(c.tunnels) == 0 {
                c.shutdown.Begin()
            }

            // we're done
            return
        }

        // add it to the list of tunnels
        c.tunnels = append(c.tunnels, t)

        // acknowledge success
        c.out <- &msg.NewTunnel{
            Url:      t.url,
            Protocol: proto,
            ReqId:    rawTunnelReq.ReqId,
        }

        rawTunnelReq.Hostname = strings.Replace(t.url, proto+"://", "", 1)
    }
}

Server端创建tunnel的实际工作由NewTunnel完成:

// ngrok/src/ngrok/server/tunnel.go
func NewTunnel(m *msg.ReqTunnel, ctl *Control) (t *Tunnel, err error) {
    t = &Tunnel{
      … …
    }

    proto := t.req.Protocol
    switch proto {
    case "tcp":
        bindTcp := func(port int) error {
            if t.listener, err = net.ListenTCP("tcp",
               &net.TCPAddr{IP: net.ParseIP("0.0.0.0"),
               Port: port}); err != nil {
                … …
                return err
            }

            // create the url
            addr := t.listener.Addr().(*net.TCPAddr)
            t.url = fmt.Sprintf("tcp://%s:%d", opts.domain, addr.Port)

            // register it
            if err = tunnelRegistry.RegisterAndCache(t.url, t);
               err != nil {
                … …
                return err
            }

            go t.listenTcp(t.listener)
            return nil
        }

        // use the custom remote port you asked for
        if t.req.RemotePort != 0 {
            bindTcp(int(t.req.RemotePort))
            return
        }
        // try to return to you the same port you had before
        cachedUrl := tunnelRegistry.GetCachedRegistration(t)
        if cachedUrl != "" {
            … …
        }

        // Bind for TCP connections
        bindTcp(0)
        return

    case "http", "https":
        l, ok := listeners[proto]
        if !ok {
            … …
            return
        }

        if err = registerVhost(t, proto, l.Addr.(*net.TCPAddr).Port);
           err != nil {
            return
        }

    default:
        err = fmt.Errorf("Protocol %s is not supported", proto)
        return
    }

    … …

    metrics.OpenTunnel(t)
    return
}

可以看出,NewTunnel区别对待tcp和http/https隧道:

- 对于Tcp隧道,NewTunnel先要看是否配置了remote_port,如果remote_port不为空,则启动监听这个 remote_port。否则尝试从cache里找出你之前创建tunnel时使用的端口号,如果可用,则监听这个端口号,否则bindTcp(0),即 随机选择一个端口作为该tcp tunnel的remote_port。

- 对于http/https隧道,ngrokd启动时就默认监听了80和443,如果ngrok请求建立http/https隧道(目前不支持设置remote_port),则ngrokd通过一种自实现的vhost的机制实现所有http/https请求多路复用到80和443端口上。ngrokd不会新增监听端口。

从下面例子,我们也可以看出一些端倪。我们将debug.yml改为:

server_addr: ngrok.me:4443
trust_host_root_certs: false
tunnels:
      test:
        proto:
           http: 8080
      test1:
        proto:
           http: 8081
      ssh1:
        remote_port: 50000
        proto:
            tcp: 22
      ssh2:
        proto:
            tcp: 22

启动ngrok:

$./bin/release/ngrok -config=debug.yml -log=ngrok.log start test test1  ssh1 ssh2

Tunnel Status                 online
Version                       1.7/1.7
Forwarding                    tcp://ngrok.me:50000 -> 127.0.0.1:22
Forwarding                    tcp://ngrok.me:56297 -> 127.0.0.1:22
Forwarding                    http://test.ngrok.me -> 127.0.0.1:8080
Forwarding                    http://test1.ngrok.me -> 127.0.0.1:8081
Web Interface                 127.0.0.1:4040

可以看出ngrokd为ssh2随机挑选了一个端口56297进行了监听,而两个http隧道,则都默认使用了80端口。

如果像下面这样配置会发生什么呢?

      ssh1:
        remote_port: 50000
        proto:
            tcp: 22
      ssh2:
        remote_port: 50000
        proto:
            tcp: 22

ngrok启动会得到错误信息:
Server failed to allocate tunnel: [ctl:5332a293] [a87bd111bcc804508c835714c18a5664] Error binding TCP listener: listen tcp 0.0.0.0:50000: bind: address already in use

客户端ngrok在ClientModel control方法的main control loop中收到NewTunnel并处理该消息:

    case *msg.NewTunnel:
            if m.Error != "" {
                … …
            }

            tunnel := mvc.Tunnel{
                PublicUrl: m.Url,
                LocalAddr: reqIdToTunnelConfig[m.ReqId].Protocols[m.Protocol],
                Protocol:  c.protoMap[m.Protocol],
            }

            c.tunnels[tunnel.PublicUrl] = tunnel
            c.connStatus = mvc.ConnOnline
            c.Info("Tunnel established at %v", tunnel.PublicUrl)
            c.update()

五、Proxy Connection和Private Connection

到目前为止,我们知道了Control Connection:用于ngrok和ngrokd之间传输命令;Public Connection:外部发起的,尝试向内网服务建立的链接。

这节当中,我们要接触到Proxy Connection和Private Connection。

Proxy Connection以及Private Connection的建立过程如下:

前面ngrok和ngrokd的交互进行到了NewTunnel,这些数据都是通过之前已经建立的Control Connection上传输的。

ngrokd侧,NewControl方法的结尾有这样一行代码:

    // As a performance optimization, ask for a proxy connection up front
    c.out <- &msg.ReqProxy{}

服务端ngrokd在Control Connection上向ngrok发送了"ReqProxy"的消息,意为请求ngrok向ngrokd建立一条Proxy Connection,该链接将作为隧道数据流的承载者。

客户端ngrok在ClientModel control方法的main control loop中收到ReqProxy并处理该消息:

case *msg.ReqProxy:
            c.ctl.Go(c.proxy)

// Establishes and manages a tunnel proxy connection with the server
func (c *ClientModel) proxy() {
    if c.proxyUrl == "" {
        remoteConn, err = conn.Dial(c.serverAddr, "pxy", c.tlsConfig)
    }……

    err = msg.WriteMsg(remoteConn, &msg.RegProxy{ClientId: c.id})
    if err != nil {
        remoteConn.Error("Failed to write RegProxy: %v", err)
        return
    }
    … …
}

ngrok客户端收到ReqProxy后,创建一条新连接到ngrokd,该连接即为Proxy Connection。并且ngrok将RegProxy消息通过该新建立的Proxy Connection发到ngrokd,以便ngrokd将该Proxy Connection与对应的Control Connection以及tunnel关联在一起。

// ngrok服务端
func tunnelListener(addr string, tlsConfig *tls.Config) {
    …. …
    case *msg.RegProxy:
                NewProxy(tunnelConn, m)
    … …
}

到目前为止, tunnel、Proxy Connection都已经建立了,万事俱备,就等待Public发起Public connection到ngrokd了。

下面我们以Public发起一个http连接到ngrokd为例,比如我们通过curl 命令,向test.ngrok.me发起一次http请求。

前面说过,ngrokd在启动时默认启动了80和443端口的监听,并且与其他http/https隧道共同多路复用该端口(通过vhost机制)。ngrokd server对80端口的处理代码如下:

// ngrok/src/ngrok/server/main.go
func Main() {
    … …
 // listen for http
    if opts.httpAddr != "" {
        listeners["http"] =
          startHttpListener(opts.httpAddr, nil)
    }

    … …
}

startHttpListener针对每个连接,启动一个goroutine专门处理:

//ngrok/src/ngrok/server/http.go
func startHttpListener(addr string,
    tlsCfg *tls.Config) (listener *conn.Listener) {
    // bind/listen for incoming connections
    var err error
    if listener, err = conn.Listen(addr, "pub", tlsCfg);
        err != nil {
        panic(err)
    }

    proto := "http"
    if tlsCfg != nil {
        proto = "https"
    }

   … …
    go func() {
        for conn := range listener.Conns {
            go httpHandler(conn, proto)
        }
    }()

    return
}

// Handles a new http connection from the public internet
func httpHandler(c conn.Conn, proto string) {
    … …
    // let the tunnel handle the connection now
    tunnel.HandlePublicConnection(c)
}

我们终于看到server端处理public connection的真正方法了:

//ngrok/src/ngrok/server/tunnel.go
func (t *Tunnel) HandlePublicConnection(publicConn conn.Conn) {
    … …
    var proxyConn conn.Conn
    var err error
    for i := 0; i < (2 * proxyMaxPoolSize); i++ {
        // get a proxy connection
        if proxyConn, err = t.ctl.GetProxy();
           err != nil {
            … …
        }
        defer proxyConn.Close()
       … …

        // tell the client we're going to
        // start using this proxy connection
        startPxyMsg := &msg.StartProxy{
            Url:        t.url,
            ClientAddr: publicConn.RemoteAddr().String(),
        }

        if err = msg.WriteMsg(proxyConn, startPxyMsg);
            err != nil {
           … …
        }
    }

    … …
    // join the public and proxy connections
    bytesIn, bytesOut := conn.Join(publicConn, proxyConn)
    …. …
}

HandlePublicConnection通过选出的Proxy connection向ngrok client发送StartProxy信息,告知ngrok proxy启动。然后通过conn.Join方法将publicConn和proxyConn关联到一起。

// ngrok/src/ngrok/conn/conn.go
func Join(c Conn, c2 Conn) (int64, int64) {
    var wait sync.WaitGroup

    pipe := func(to Conn, from Conn, bytesCopied *int64) {
        defer to.Close()
        defer from.Close()
        defer wait.Done()

        var err error
        *bytesCopied, err = io.Copy(to, from)
        if err != nil {
            from.Warn("Copied %d bytes to %s before failing with error %v", *bytesCopied, to.Id(), err)
        } else {
            from.Debug("Copied %d bytes to %s", *bytesCopied, to.Id())
        }
    }

    wait.Add(2)
    var fromBytes, toBytes int64
    go pipe(c, c2, &fromBytes)
    go pipe(c2, c, &toBytes)
    c.Info("Joined with connection %s", c2.Id())
    wait.Wait()
    return fromBytes, toBytes
}

Join通过io.Copy实现public conn和proxy conn数据流的转发,单向被称作一个pipe,Join建立了两个Pipe,实现了双向转发,每个Pipe直到一方返回EOF或异常失败才会退出。后续在ngrok端,proxy conn和private conn也是通过conn.Join关联到一起的。

我们现在就来看看ngrok在收到StartProxy消息后是如何处理的。我们回到ClientModel的proxy方法中。在向ngrokd成功建立proxy connection后,ngrok等待ngrokd的StartProxy指令。

    // wait for the server to ack our register
    var startPxy msg.StartProxy
    if err = msg.ReadMsgInto(remoteConn, &startPxy);
             err != nil {
        remoteConn.Error("Server failed to write StartProxy: %v",
                   err)
        return
    }

一旦收到StartProxy,ngrok将建立一条private connection:
    // start up the private connection
    start := time.Now()
    localConn, err := conn.Dial(tunnel.LocalAddr, "prv", nil)
    if err != nil {
       … …
        return
    }
并将private connection和proxy connection通过conn.Join关联在一起,实现数据透明转发。

    m.connTimer.Time(func() {
        localConn := tunnel.Protocol.WrapConn(localConn,
             mvc.ConnectionContext{Tunnel: tunnel,
              ClientAddr: startPxy.ClientAddr})
        bytesIn, bytesOut := conn.Join(localConn, remoteConn)
        m.bytesIn.Update(bytesIn)
        m.bytesOut.Update(bytesOut)
        m.bytesInCount.Inc(bytesIn)
        m.bytesOutCount.Inc(bytesOut)
    })

这样一来,public connection上的数据通过proxy connection到达ngrok,ngrok再通过private connection将数据转发给本地启动的服务程序,从而实现所谓的内网穿透。从public视角来看,就像是与内网中的那个服务直接交互一样。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats