标签 Linux 下的文章

源创会开源访谈:十年成长,Go语言的演化之路

在参加源创会沈阳站分享之前,接受了开源中国社区编辑王练的文字专访,以下是我针对专访稿的内容。

同时该专访稿首发于开源中国开源访谈栏目,大家可以点击这里看到首发原稿。

1、首先请介绍一下自己

大家好!我叫白明(Tony Bai),目前是东软云科技的一名架构师,专职于服务端开发,日常工作主要使用Go语言。我算是国内较早接触Go语言的程序员兼Advocater了,平时在我的博客微博和微信公众号”iamtonybai”上经常发表一些关于Go语言的文章和Go生态圈内的信息。

在接触Go之前,我主要使用C语言开发电信领域的一些后端服务系统,拥有多年的电信领域产品研发和技术管理经验。我个人比较喜换钻研和分享技术,是《七周七语言》一书的译者之一,并且坚持写技术博客十余年。同时我也算是一个开源爱好者,也在github上分享过自己开发的几个小工具。

目前的主要研究和关注的领域包括:Go、KubernetesDocker区块链和儿童编程教育等。

img{512x368}

2、最初是因为什么接触和使用 Go 语言的?它哪方面的特性吸引了您?

个人赶脚:选编程语言和谈恋爱有些像(虽然我只谈过一次^_^),我个人倾向一见钟情。我个人用的最多的编程语言是GoC,这两门语言算是我在不同时期的“一见钟情”的对象吧,也是最终“领(使)证(用)”的,前提:编程世界是“一夫多妻制”^0^。

当然早期也深入过C++,后来JavaRubyCommon LispHaskellPython均有涉猎,这些语言算是恋爱对象,但最终都分手了。

最初接触到Go应该是2011年,那是因为看了Rob Pike的3 Day Go Course,那时Go 1.0版本还没有发布,如果没记错,Rob Pike slide中用的还是Go r60版本的语法。现在大脑中留存的当时的第一感觉就是“一见钟情”!

现在回想起来,大致有这么几点原因:

  • Go与C一脉相承,对于出身C程序员的我来说,这一语言传承非常自然,多体现在语法上;
  • Go语言非常简单,尤其是GC、并发goroutine、interface,让我眼前一亮;
  • Rob Pike的Go Course Slide组织的非常好,看完三篇Slide,基本就入门了。

于是在那之后,又系统阅读了Ivo Balbaert的《The Way To Go》、《Programming in Go – Creating Applications for the 21st Century》等基本新鲜出炉的书,于是就走入了Go语言世界。

不过当时Go1尚未发布,Go自身也有较大变化,工作中也无法引入这门语言,2013年对Go的关注有些中断,2014年又恢复,直至今天。现在感觉到:如果工作语言与兴趣语言能保持一致是多么幸福的一件事啊。

3、有人说 Go 是互联网时代的 C 语言,对于这两门语言,您是怎么看的?

如果没记错,至少在国内,第一个提出这种观点的是现七牛的ceo许式伟了,老许是国内第一的Go 鼓吹者,名副其实;而且许式伟的鼓吹不仅停留在嘴上,更是付诸于实践:据说其七牛云的基础设施基本都是Go开发的。因此,对他的“远见卓识”还是钦佩之至的。

C语言缔造的软件行业的成就是举世瞩目,也是公认的。其作者Dennis Ritchie授予图灵奖就是对C语言最大的肯定和褒奖。C语言缔造了单机操作系统和基础软件的时代:UnixLinux、nginx/apache以及无数以*inx世界为中心的工具,是云时代之前最伟大的系统编程语言和基础设施语言。

至于 “Go是互联网时代的 C 语言”这一观点,如果在几年前很多人还会疑惑甚至不懈,但现在来看:事实胜于雄辩。我们来看看当前CNCF基金会(Cloud Native Computing Foundation)管理的项目中,有一大半都是Go语言开发的,包括KubernetesPrometheus等炙手可热的项目;这还不包括近两年最火的docker项目。事实证明:Go已成为互联网时代、云时代基础设施领域、云服务领域的最具竞争力的编程语言之一。

不过和C不同的是,Go语言还在发展,还在演进,还有巨大的提升空间,Gopher群体还在变大,去年再次成为Tiboe的年度语言就是例证。

当然我们还得辩证的看,Go语言虽然在云时代基础设施领域逐渐继承C语言的衣钵,但是由于语言设计理念和设计哲学上的原因,在操作系统以及嵌入式领域,Go还在努力提升。

4、Go 也经常被拿来和 Java、Rust 等语言比较,您认为它最适合的使用场景有哪些?

早期对Java有所涉猎,但止步于Java体量过重和框架过多;Rust和Go一样是近几年才兴起的一门很有理想、很有抱负的编程语言,其目标就是安全的系统级编程语言,运行性能极佳,用以替代C/C++的,但就像前面所提到的那样,第一眼看到Rust的语法,就没有那种“一见钟情”的赶脚,希望Rust不要像C++那样,演变的那么复杂。

Go从其第一封设计email出炉到如今已有十年了,我觉得也不应该由我来告诉大家Go更适合应用在什么领域了,事实摆在那里:“大家都用的地方,总是对的”。这里我只是大致归纳一下:

Go在数据科学、人工智能领域也有较大进展,希望在将来能看到Go在这些领域有杀手级项目出现。

5、Go发展已有10 年,其特性随着版本的迭代不断在更新,您觉得它最好的和最需要改进的特性分别有哪些?

每种语言都有自己的设计哲学和设计者的考量。我在GopherChina 2017的topic中就提到过Go语言的价值观,其中之一就是Simplicity,即简单。相信简单也是让很多开发者走进Gopher世界的重要原因。从今年GopherCon 2017大会上Russ Cox的“Toward Go 2”的主题演讲中,我们也可以看出:Go team并不会单纯地为了迎合community的意愿去堆砌feature,那go势必走上c++的老路,变得日益复杂,Go受欢迎的基础之一就不存在了。

但演进就一定会要付出代价的,尤其是Go1的约束在前。从我个人对Go的应用来看,最想看到的是包管理和error处理方面的体验提升。但我觉得这两点都是可以通过渐进改进实现的,甚至不会影响到Go1兼容性,不会像引入generics机制,实现难度也不会太高。

对于目前的error handling机制,我个人并没有太多的排斥,这可能是因为我出身C程序员的缘故吧。在error handling这块,只是希望能让gopher拥有更好的体验即可,比如说围绕现有的error机制,增加一些设施以帮助gopher更好的获取error cause信息,就像github.com/pkg/errors包那样。

对于社区呼声很高的generics(泛型),我个人倒是没有什么急切需求。generics虽然可以让大幅提升语言的表现力(expressiveness),但也给语言自身带来了较大的复杂性。就个人感受而言,C++就是在加入generics后才变得无比庞大和复杂的,同时generics还让很多C++ programmer沉溺于很多magic trick中无法自拔,这对于以“合作分工”为主流的软件开发过程来说,并不是好事情。

6、Go 官方团队已发布 2.0 计划,更侧重于兼容性和规模化方面。对此,您怎么理解?Go 否已达到最佳性能?

这个问题和上面的问题有些类似,我的想法差不多。Go team在特性演进方面会十分谨慎,这也是go Team一贯的风格。从Go1到Go2,从现在看来,这个时间跨度不会很短,也许是2-3年也不一定,心急吃不了热豆腐^0^,社区分裂可不是go team想看到的事情,python可是前车之鉴。

另外,Go性能显然还是有改善空间的,尤其是编译性能、GC吞吐和延迟的tradeoff方面;另外goroutine调度器算法方面可能还有改进空间。当前Goroutine调度算法的实现者Dmitry Vyukov之前就编写了一个scheduler优化的proposal: NUMA-aware scheduler for Go(针对numa体系的优化),但也许因为重要性、优先级等考量,一直没有实现,也许后续会实现。

7、Go 在国内似乎比国外还要火,您认为造成这种现象的原因是什么?

从一些搜索引擎的trend数据来看,Go在中国地区的确十分火热,甚至在热度值上是领先于欧美世界的。个人觉得造成这种现象的原因可能有如下几点:

  • 语言本身的接受度高

首先,从Go语言本身考虑。事实证明了:Go语言的设计匹配了国内程序员的行业业务需求和对语言特性的需求(口味):
a) 语言:简单、正交组合和并发;开发效率和运行效率双高;
b) 自带battery:丰富的标准库和高质量第三方库;
c) 迎合架构趋势:天生适合微服务….

  • 引入早且与Go advocator的努力分不开

当前再也不是那个“酒香不怕巷子深”的年代了,再好的编程语言也需要推广和宣称。Go team在社区建设、全世界推广方面也是不遗余力。至于国内更是有像许式伟、Astaxie这样的占据高端IT圈子的advocator在站台宣传。

  • 互联网飞速发展推动Go在国内落地

中国已经是事实的移动互联网时代的领军者,大量创业公司如雨后春笋般诞生。而Go对于startup企业来说是极其适合的。开发效率高,满足了Startup企业对产品或服务快速发布的需求;运行效率高可以让startup公司节省初期在硬件方面的投入:一台主机顶住100w并发。

对于那些巨头、大公司而言,Go又是云计算时代基础设施的代表性语言,自然也会投入到Go怀抱,比如:阿里CDN、百度门户入口、滴滴、360等。

8、对于刚开始学习 Go ,并期待将其应用在项目中的新人们,您有哪些建议?

学语言,无非实践结合理论。

  • 理论:书籍和资料

这里转一下我在知乎上一个回答

强烈推荐:Rob Pike 3-day Go Course,虽然语法过时了,但看大师的slide,收获还是蛮多的。

Go基础: Go圣经《The Go Programming Language》和《Go in Action》。
原理学习: 雨痕的《Go学习笔记》。
Go Web编程: 直接看astaxie在github上的《Go web编程》。

还有一本内容有些旧的,但个人觉得值得一看的书就是《The Way To Go》,大而全。Github上有部分章节的中译版

另外,建议看一遍官方的Language specificationeffective gogo faq,对学go、理解go设计的来龙去脉大有裨益。

  • 实践:多读多写Code

多读代码:首选标准库,因为Go的惯用法和最佳实践在标准库中都有体现。

写代码:这个如果有项目直接实践那是非常的幸福;否则可以从改写一个自己熟悉领域的工具开始。比如:以前我刚接触Go的时候,没啥可写的。就改写一套cmpp协议实现。后来做wechat接口,实现了一个简单的wechat基本协议,当然这两个代码也过于陈旧了,代码设计以及其中的go语言用法不值得大家学习了^0^。


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

源创会2017沈阳站讲稿:基于Harbor的高可用企业级私有容器镜像仓库部署实践

上周六开源中国源创会在沈阳举办了一次技术活动,很荣幸以本地讲师的身份和大家交流了一个topic: “基于Harbor的高可用企业级私有容器镜像仓库部署实践”。之所以选择这个topic,是因为这是我们团队的项目实践心得。很多企业和组织在深入使用Docker之后,都会有类似的高可用私有容器仓库搭建的需求,于是我就把我们摸索的实践和填坑过程拿出来,用30分钟与大家分享一下。另外这算是一个入门级的分享,并未深入过多原理。以下就是本次分享的内容讲稿整理。如有不妥或不正确的地方,欢迎交流指正。

img{512x368}

大家下午好,欢迎各位来到源创会沈阳站。在这里我也代表沈阳的IT人欢迎源创会来到沈阳,希望能有更多的像源创会这样的组织到沈阳举办技术活动。非常高兴能有这个机会在源创会这个平台上做分享, 今天和大家一起探讨的题目是:“基于Harbor的高可用企业级私有容器镜像仓库部署实践”。题目有些长,简单来说就是如何搭建一个好用的镜像仓库。

img{512x368}

首先做个简单的自我介绍。我叫白明,东软(注:源创会这次活动的会场在东软沈阳园区)是我的主场,在这里工作很多年,目前就职东软云科技;Gopher一枚,近两年主要使用Go语言开发;技术译者,曾参与翻译过《七周七语言》一书;并且参与过智慧城市架构系列丛书的编著工作;GopherChina大会讲师,这里顺便说一下GopherChina大会,它是目前中国地区规模最大、水平最高的Go语言技术大会,一般每年4月份在北京或上海举行。希望有志于Go语言开发的开发者积极参与;Blogger,写博10多年,依旧笔耕不倦;目前主要从事Docker&kubernetes的研究和实践。

当今,IT技术发展飞快。五年前, IT从业者口中谈论最多的技术是Virtual Machine,即虚拟化技术,人们经常争论的是到底是vmware的技术好,还是原生kvm技术稳定,又或是xen的技术完美。转眼间五年过去了,大家口中经常讨论的技术词汇发生了变化,越来越多的技术人在谈论Docker,谈论容器。

Docker是什么? Docker这门技术非常热,但我们要透过现象看其本质:

Docker技术并不是新技术,而是将已有技术进行了更好的整合和包装

内核容器技术以一种完整形态最早出现在Sun公司Solaris操作系统上,Solaris是当时最先进的服务器操作系统。2005年Solaris发布Solaris Container技术,从此开启了内核容器之门。

IT技术发展的趋势就是这样:商业有的,开源也要有。三年后,即2008年,以Google公司开发人员为主导的Linux Container,LXC功能在被merge到Linux内核。LXC是一种内核级虚拟化技术,主要基于namespacescgroup技术,实现共享一个os kernel前提下的进程资源隔离,为进程提供独立的虚拟执行环境,这样的一个虚拟的执行环境就是一个容器。本质上说,LXC容器与现在的Docker所提供容器是一样的。但是,当时LXC处于早期阶段,开发人员可能更为关注LXC的技术实现,而对开发体验方面有所忽略,导致LXC技术使用门槛较高,普通应用开发者学习、理解和使用它的心智负担较高,因此应用并不广泛。

这一情况一直持续到2013年,当时美国一家名不见经传的公司dotCloud发布了一款平台工具Docker,对外宣称可以实现:“build,ship and run any app and anywhere”。Docker实质上也是基于namespaces和cgroup技术的,Docker的创新之处在于其基于union fs技术定义了一套应用打包规范,真正将应用及其运行的所有依赖都封装到一个特定格式的文件中,这种文件就被称为image,即镜像文件。同时,Docker还提供了一套抽象层次更高的工具集,这套工具对dev十分友好,具有良好的开发体验(Developer eXperience),开发者无需关心namespace, cgroups之类底层技术,即可很easy的启动一个承载着其应用的容器:

Docker run ubuntu echo hello

因此, 从2013发布以来,Docker项目就像坐上了火箭,发展迅猛,目前已经是github上最火爆的开源项目之一。这里还要提一点就是:Docker项目是使用go语言开发的,Docker项目的成功,也或多或少得益于Go优异的开发效率和执行效率。

Docker技术的出现究竟给我们带来了哪些好处呢,个人觉得至少有以下三点:

  • 交付标准化:Docker使得应用程序和依赖的运行环境真正绑定结合为一体,得之即用。这让开发人员、测试和运维实现了围绕同一交付物,保持开发交付上下文同步的能力,即“test what you write, ship what you test”;
  • 执行高效化:应用的启动速度从原先虚拟机的分钟级缩短到容器的秒级甚至ms级,使得应用可以支持快速scaling伸缩;
  • 资源集约化:与vm不同的是,Container共享一个内核,这使得一个container的资源消耗仅为进程级别或进程组级别。同时,容器的镜像也因为如此,其size可以实现的很小,最小可能不足1k,平均几十M。与vm动辄几百兆的庞大身段相比,具有较大优势。

有了image文件后,自然而言我们就有了对image进行存取和管理的需求,即我们需要一个镜像仓库,于是Docker推出了Docker registry这个项目。Docker Registry就是Docker image的仓库,用来存储、管理和分发image的;Docker registry由Docker公司实现,项目名为distribution,其实现了Docker Registr 2.0协议,与早前的Registry 1.x协议版本相比,Distribution采用Go语言替换了Python,在安全性和性能方面都有了大幅提升;Docker官方运行着一个世界最大的公共镜像仓库:hub.docker.com,最常用的image都在hub上,比如反向代理nginx、redis、ubuntu等。鉴于国内访问hub网速不佳,多使用国内容器服务厂商提供的加速器。Docker官方还将Registry本身打入到了一个image中,方便开发人员快速以容器形式启动一个Registry:

docker run -d -p 5000:5000 --restart=always --name registry registry:2

不过,这样启动的Registry更多仅仅是一个Demo级别或满足个体开发者自身需要的,离满足企业内部开发流程或生产需求还差了许多。

既然Docker官方运行着免费的镜像仓库,那我们还需要自己搭建吗?实际情况是,对Docker的使用越深入,对私有仓库的需求可能就越迫切。我们先来看一组Docker 2016官方的调查数据,看看Docker都应用在哪些场合。 从Docker 2016官方调查来看,Docker 更多用于dev、ciDevOps等环节,这三个场合下的应用占据了半壁江山。而相比于公共仓库,私有镜像仓库能更好的满足开发人员在这些场合对镜像仓库的需求。理由至少有四点:

  • 便于集成到内部CI/Cd
    以我司内部为例,由于公司内部办公需要使用正向代理访问外部网络,要想将Public Registry集成到你的内部CI中,技术上就会有很多坎儿,整个搭建过程可能是非常痛苦的;

  • 对镜像可以更全面掌控
    一般来说,外部Public Registry提供的管理功能相对单一,往往无法满足企业内部的开发和交付需求;

  • 内部网络,网络传输性能更好
    内部开发运维流水线很多环节是有一定的时间敏感性的,比如:一次CI如果因为network问题导致image pull总是timeout,会让dev非常闹心,甚至影响整体的开发和交付效率。

  • 出于安全考虑
    总是有企业不想将自己开发的软件或数据放到公网上,因此在企业内部选择搭建一个private registry更会让这些企业得到满足;另外企业对仓库的身份验证可能还有LDAP支持的需求,这是外部registry无法满足的。

一旦企业决定搭建自己的private仓库,那么就得做一个private仓库的技术选型。商业版不在我们讨论范围内,我们从开源软件中挑选。不过开源的可选的不多,Docker 官方的Registry更聚焦通用功能,没有针对企业客户需求定制,开源领域我们大致有两个主要候选者:SUSEPortus和Vmware的Harbor。针对开源项目的技术选型,我个人的挑选原则最简单的就是看社区生态,落实到具体的指标上包括:

  • 项目关注度(即star数量)
  • 社区对issue的反馈数量和积极性
  • 项目维护者对issue fix的积极程度以及是否有远大的roadmap

对比后,我发现在这三个指标上,目前Harbor都暂时领先portus一段距离,于是我们选择Harbor。

Harbor是VMware中国团队开源的企业级镜像仓库项目,聚焦镜像仓库的企业级需求,这里从其官网摘录一些特性,大家一起来看一下:

– 支持基于角色的访问控制RBAC;
– 支持镜像复制策略(PUSH);
– 支持无用镜像数据的自动回收和删除; – 支持LDAP/AD认证;
– Web UI;
– 提供审计日志功能;
– 提供RESTful API,便于扩展;
– 支持中文&部署Easy。

不过,Harbor默认安装的是单实例仓库,并非是高可用的。对于接纳和使用Docker的企业来说,镜像仓库已经企业内部开发、交付和运维流水线的核心,一旦仓库停掉,流水线将被迫暂停,对开发交付的效率会产生重要影响;对于一些中大型企业组织,单实例的仓库性能也无法满足需求,为此高可用的Harbor势在必行。在设计Harbor HA方案之前,我们简单了解一下Harbor组成架构。

一个Harbor实例就是一组由docker-compose工具启动的容器服务,主要包括四个主要组件:

  • proxy
    实质就是一个反向代理nginx,负责流量路由分担到ui和registry上;

  • registry
    这里的registry就是原生的docker官方的registry镜像仓库,Harbor在内部内置了一个仓库,所有仓库的核心功能均是由registry完成的;

  • core service
    包含了ui、token和webhook服务;

  • job service
    主要用于镜像复制供。

同时,每个Harbor实例还启动了一个MySQL数据库容器,用于保存自身的配置和镜像管理相关的关系数据。

高可用系统一般考虑三方面:计算高可用、存储高可用和网络高可用。在这里我们不考虑网络高可用。基于Harbor的高可用仓库方案,这里列出两个。

img{512x368}

两个方案的共同点是计算高可用,都是通过lb实现的多主热运行,保证无单点;存储高可用则各有各的方案。一个使用了分布式共享存储,数据可靠性由共享存储provider提供;另外一个则需要harbor自身逻辑参与,通过镜像相互复制的方式保持数据的多副本。

两种方案各有优缺点,就看哪种更适合你的组织以及你手里的资源是否能满足方案的搭建要求。

方案1是Harbor开发团队推荐的标准方案,由于基于分布式共享存储,因此其scaling非常好;同样,由于多Harbor实例共享存储,因此可以保持数据是实时一致的。方案1的不足也是很明显的,第一:门槛高,需要具备共享存储provider;第二搭建难度要高于第二个基于镜像复制的方案。

方案2的优点就是首次搭建简单。不足也很多:scaling差,甚至是不能,一旦有三个或三个以上节点,可能就会出现“环形复制”;镜像复制需要时间,因此存在多节点上数据周期性不一致的情况;Harbor的镜像复制规则以Project为单位配置,因此一旦新增Project,需要在每个节点上手工维护复制规则,非常繁琐。因此,我们选择方案1。

我们来看一下方案1的细节: 这是一幅示意图。

  • 每个安放harbor实例的node都mount cephfs。ceph是目前最流行的分布式共享存储方案之一;
  • 每个node上的harbor实例(包含组件:ui、registry等)都volume mount node上的cephfs mount路径;
  • 通过Load Balance将request流量负载到各个harbor实例上;
  • 使用外部MySQL cluster替代每个Harbor实例内部自维护的那个MySQL容器;对于MySQL cluster,可以使用mysql galera cluster或MySQL5.7以上版本自带的Group Replication (MGR) 集群。
  • 通过外部Redis实现访问Harbor ui的session共享,这个功能是Harbor UI底层MVC框架-beego提供的。

接下来,我们就来看具体的部署步骤和细节。

环境和先决条件:

  • 三台VM(Ubuntu 16.04及以上版本);
  • CephFS、MySQL、Redis已就绪;
  • Harbor v1.1.0及以上版本;
  • 一个域名:hub.tonybai.com:8070。我们通过该域名和服务端口访问Harbor,我们可以通过dns解析多ip轮询实现最简单的Load balance,虽然不完美。

第一步:挂载cephfs

每个安装Harbor instance的节点都要mount cephfs的相关路径,步骤包括:

#安装cephfs内核驱动
apt install ceph-fs-common

# 修改/etc/fstab,添加挂载指令,保证节点重启依旧可以自动挂载cephfs
xx.xx.xx.xx:6789:/apps/harbor /mnt/cephfs/harbor ceph name=harbor,secretfile=/etc/ceph/a dmin.secret,noatime,_netdev 0 2

这里涉及一个密钥文件admin.secret,这个secret文件可以在ceph集群机器上使用ceph auth tool生成。

img{512x368}

前面提到过每个Harbor实例都是一组容器服务,这组容器启动所需的配置文件是在Harbor正式启动前由prepare脚本生成的,Prepare脚本生成过程的输入包括:harbor.cfg、docker-compose.yml和common/templates下的配置模板文件。这也是部署高可用Harbor的核心步骤,我们逐一来看。

第二步:修改harbor.cfg

我们使用域名访问Harbor,因此我们需要修改hostname配置项。注意如果要用域名访问,这里一定填写域名,否则如果这里使用的是Harbor node的IP,那么在后续会存在client端和server端仓库地址不一致的情况;

custom_crt=false 关闭 crt生成功能。注意:三个node关闭其中两个,留一个生成一套数字证书和私钥。

第三步:修改docker-compose.yml

docker-compose.yml是docker-compose工具标准配置文件,用于配置docker-compose即将启动的容器服务。针对该配置文件,我们主要做三点修改:

  • 修改volumes路径
    由/data/xxx 改为:/mnt/cephfs/harbor/data/xxx
  • 由于使用外部Mysql,因此需要删除mysql service以及其他 service对mysql service的依赖 (depends_on)
  • 修改对proxy外服务端口 ports: 8070:80

第四步:配置访问external mysql和redis

external mysql的配置在common/templates/adminserver/env中,我们用external Mysql的访问方式覆盖下面四项配置:

MYSQL_HOST=harbor_host
MYSQL_PORT=3306
MYSQL_USR=harbor
MYSQL_PWD=harbor_password

还有一个关键配置,那就是将RESET由false改为true。只有改为true,adminserver启动时,才能读取更新后的配置

RESET=true

Redis连接的配置在common/templates/ui/env中,我们需要新增一行:

_REDIS_URL=redis_ip:6379,100,password,0

第五步:prepare并启动harbor

执行prepare脚本生成harbor各容器服务的配置;在每个Harbor node上通过下面命令启动harbor实例:

docker-compose up -d

启动后,可以通过docker-compose ps命令查看harbor实例中各容器的启动状态。如果启动顺利,都是”Up”状态,那么我们可以在浏览器里输入:http://hub.tonybai.com:8070,不出意外的话,我们就可以看到Harbor ui的登录页面了。

至此,我们的高可用Harbor cluster搭建过程就告一段落了。

Troubleshooting

不过,对Harbor的认知还未结束,我们在后续使用Harbor的过程中遇到了一些问题,这里举两个例子。

问题1: docker login hub.tonybai.com:8070 failed

现象日志:

Error response from daemon: Get https://hub.tonybai.com:8070/v1/users/: http: server gave HTTP response to HTTPS client

通过错误日志分析应该是docker daemon与镜像仓库所用协议不一致导致。docker engine默认采用https协议访问仓库,但之前我们搭建的Harbor采用的是http协议提供服务,两者不一致。

解决方法有两种,这里列出第一种:让docker引擎通过http方式访问harbor仓库:

在/etc/docker/daemon.json中添加insecure-registry:

{
    "insecure-registries": ["hub.tonybai.com:8070"]
}

重启docker service生效

第二种方法就是让Harbor支持https,需要为harbor的proxy配置私钥和证书,位置:harbor.cfg中

#The path of cert and key files for nginx, they are applied only the protocol is set to https
ssl_cert = /data/cert/server.crt
ssl_cert_key = /data/cert/server.key

这里就不细说了。

问题2:docker login hub.tonybai.com:8070 有时成功,有时failed

现象日志:

第一次登录成功:
# docker login -u user -p passwd http://hub.tonybai.com:8070 Login Succeeded

第二次登录失败:
# docker login -u user -p passwd http://hub.tonybai.com:8070
Error response from daemon: login attempt to http://hub.tonybai.com:8070/v2/ failed with status: 401 Unauthorized

这个问题的原因在于对docker registry v2协议登录过程理解不够透彻。docker registry v2是一个两阶段登录的过程:

  • 首先:docker client会到registry去尝试登录,registry发现request中没有携带token,则返回失败应答401,并告诉客户端到哪里去获取token;
  • 客户端收到应答后,获取应答中携带的token service地址,然后到harbor的core services中的token service那里获取token(使用user, password进行校验)。一旦token service校验ok,则会使用private_key.pem生成一个token;
  • 客户端拿到token后,再次到registry那里去登录,这次registry用root.crt去校验客户端携带的token,校验通过,则login成功。

由于我们是一个harbor cluster,如果docker client访问的token service和registry是在一个harbor实例中的,那么login就会ok;否则docker client就会用harbor node1上token service生成的token到harbor node2上的registry去登录,由于harbor node2上root.crt与harbor node1上private_key.pem并非一对,因此登录失败

解决方法:将所有节点上使用同一套root.crt和private_key.pem。即将一个harbor node(harbor.cfg中custom_crt=true的那个)上的 common/config/ui/private_key.pem和 common/config/registry/root.crt复制到其他harbor node;然后重建各harbor实例中的容器。

至此,我们的高可用Harbor仓库部署完了。针对上面的配置过程,我还做了几个录屏文件,由于时间关系,这里不能播放了,大家可以在下面这个连接下载并自行播放收看。

Harbor install 录屏: https://pan.baidu.com/s/1o8JYKEe

谢谢大家!

讲稿slide可以在这里获取到。

微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

Hello, Apollo

要说目前哪个技术领域投资最火热,莫过于人工智能。而人工智能领域中最火的(或者说之一)肯定要算上自动驾驶。自动驾驶的概念不是什么新鲜的玩意了,只是随着近两年这一波人工智能的大热,自动驾驶又被推到了风口浪尖。各大汽车厂商、互联网公司也都跃跃欲试,准备给汽车这一“历经百年的黄金平台”做一次新的“赋能”。

今年7月5日,国内搜索引擎No.1企业百度在其首届百度AI开发者大会上发布了Apollo自动驾驶开放平台,同时百度也对外宣布baidu正式从互联网公司转型为一家人工智能公司。作为“错过了移动互联网时代”的典型公司代表,百度这次押宝人工智能,我觉得也是战略上迫不得已的选择:在现有现金牛“搜索广告业务”还能带来大量利润的时候,为抓住未来那头现金牛而进行的努力。而Apollo自动驾驶平台恰是百度人工智能战略的重要组成部分。

Apollo,阿波罗是古希腊神话中的光明之神,这个名字在西方文化中“自带光环”。提到Apollo,很多人还会想到半个多世纪前美国著名的“登月计划”。百度将其自动驾驶平台命名为Apollo,我猜测是有“借势之意”,即期望Apollo这个项目能在百度众多人工智能业务中拥有美好光明的前景。

作为技术人员,我们不能像一般媒体人员那样根据官方提供的“说辞”做宽泛的介绍,我们要与Apoll亲密接触,看看Apollo究竟是什么,究竟能做什么。这里就和大家一起来Say Hello to Apollo。

一、自动驾驶汽车- “百年黄金平台”的新时代赋能

在正式入门Apollo之前,还要说点“废话”。在接触Apollo之前,我从未认真思考过“汽车”这个平台,这次算是“顿悟”,虽然也算不上深刻。就我看来,汽车 是一个不可多得的“黄金平台”。作为一个平台,汽车已经有了上百年的历史,见证了人类科学技术的发展,是跨学科之集大成者。这百年多时间,任何新的、先进的民用技术都会赋能在汽车工业上。以一个长不足5米,重量不超过2t的一般家用乘用车为例,我们在其上面能看到先进的能源技术、材料技术、化工技术、电子技术、通讯技术以及精密的机械原件和组装技术等,可以说汽车为各个公司的创造力提供了展示的舞台。

就普通老百姓的衣食住行而言,汽车也是史无前例的高频使用典范,且是最直接、最贴近普通百姓生活的,这些都是飞机、火车等无法媲美的(如果非要选一个,那只有智能终端能与汽车媲美了,尤其是在集成度方面)。即便是到了科幻片中的漫天跑飞行器的时候,汽车也可能依旧是短距离交通的首选。当然届时的汽车很可能与我们此时的汽车大不相同了。随着时代的进步,汽车也在演化,日新月异的新技术、新材料、新能源对汽车的进一步赋能,因此汽车依旧是朝阳产业,这也是国际资本依旧积极群雄逐鹿汽车工业发展的根本原因了。比如:通过新能源方式赋能汽车的特斯拉、通过无人驾驶技术赋能的Google的waymo等。当然,不仅是从技术方面,从商业模式方面也有围绕着汽车这一平台创新的经典案例,典型的比如:uber滴滴等的高效出行以及近期日渐升温的共享汽车出行。

可以说,各大公司都在从自身优势出发,考虑如何为汽车这一百年黄金平台赋能。从这一点出发,我们就能大致理解百度Apollo的出现了:它是baidu结合自身的技术优势和数据优势拥抱汽车工业、为汽车做新时代赋能而迈出的重要一步。

二、Apollo的技术架构

Apollo是一套完整的自动驾驶技术方案,官方架构原图的截图较为模糊,这里自己画了一个简单的四层结构,每层内的模块暂未画出,因为不是本次入门的重点:

img{512x368}

按照上图,apollo自动驾驶分成四层技术栈,从下到上分别为:

1、Reference Vehicle Platform(参考车辆平台)

自动驾驶最终都要落地到车上,因此apollo抽象了一个”参考车辆平台”层,通过电子化的方式控制车辆的行驶行为。

Note: 在开发者大会上,百度展示了由美国创业公司AutonomouStuff基于Apollo 1.0开放平台改装而成的循迹自动驾驶车,这辆车是一辆美系的林肯MKZ。也就是说当前发布的Apollo适配林肯MKZ是没有问题的。但这款中型车对于普通开发者来说门槛算是稍高了。如果百度能拿出一款大众系、丰田系或至少也应该是一个本田系这样的车型,那对自动驾驶领域的开发者或者说爱好者来说,才是福利。相比而言,著名黑客George Hotz创立的自动驾驶技术公司comma.ai为其openpilot初始选用的车型则是Honda系的思域和CR-V,滥大街的车型,容易搞到,且低成本搞到,也容易改装。

2、Reference Hardware Platform(参考硬件平台)

这一层为自动驾驶汽车提供计算、感知、交互的硬件能力,包括计算单元(车载处理器设备)、GPS/IMU(惯性测量设备)、摄像头、激光雷达、声波雷达、HMI(人机接口)等。在发布的Apollo 1.0版本中,开放的硬件能力包括:计算单元、GPS/IMU(惯性测量设备)以及HMI。

3、Apollo open software Platform (开放软件平台)

这一层是百度Apollo 1.0开放的核心部分,见下图(蓝色的代表在apollo 1.0.0中已经开放的能力):

img{512x368}

从图中看到,这一层还可以分为三个子层,从下至上分别是:

  • apollo kernel层

这一层是运行于硬件上面的OS,对于自动驾驶这种实时性要求特别强的领域,这里显然只能是RTOS(实时操作系统)。Apollo 1.0开放的源码中包含一个”Apollo Kernel“的项目,在这个项目下汇集着可以满足实时性需求的OS kernel。当然目前还仅有一个选择:realtime linux kernel。这是apollo基于Linux Kernel 4.4.32+realtime patch定制的一款专用linux内核。

  • apollo platform层

在Kernel层的上面就是apollo的runtime framework了,提供platform级的支撑。Apollo 1.0同样也创建了一个专用项目:apollo-platform,用于汇集满足apollo平台级支撑需求的platform。当前该项目下也仅提供了一种选择:Apollo ROS,是基于ROS1的Indigo版二次开发后的定制版ROS。Apollo ROS基于自动驾驶需求出发,对ROS1主要做了三方面改进:

  • 为优化自动驾驶大量使用传感器引发很大的传输带宽需求, Apollo ROS改变基于socket的网络传输模式,大量采用共享内存的node间通信机制,减少传输中的数据拷贝,显著提升传输效率, 尤其是在满足一对多的传输场景下效果明显;

  • 从鲁棒性出发,使用RTPS(Real-Time Publish Subscribe)服务发现协议实现完全的P2P网络拓扑,避免原ROS的以Master作为拓扑网络的中心的单点故障问题;

  • 使用protobuf替代原ROSmessage,提供很好的向后兼容,避免接口升级后,不同版本的模块难以兼容的问题。

其实第二点改进也是ROS2正在做的事情。关于Apollo ROS的详尽变化,可以参考前不久百度工程师的一个分享:《Apollo代码开放框架—ROS 探索与实践》

  • apollo modules层

在这一层是apollo的功能modules,当前似乎依旧是基于ROS的package开发的,在github.com/ApolloAuto/apollo/modules/common/apollo_app.cc你大致能看出来一个ROS Package的开发模板。这一层提供诸如:规划(planning)、洞察(perception)、控制(control)、预测(prediction)、决策(decision)、定位等诸多功能。但Apollo 1.0仅仅开放了Control、Localization和HMI三个module,因为这三块足以构成Apollo 1.0提供的封闭场地循迹驾驶体系了。

4、Cloud Services(云端服务)

Apollo 1.0还开放了云端数据平台,以及唤醒万物的DuerOS能力。DuerOS也是Baidu人工智能战略的重要棋子,似乎也是目前Baidu在AI方面最为成熟的、应用最广的产品。当然这一层还包括仿真、高精度地图等服务,不过目前尚未开放。

三、上手Apollo

买不起林肯MKZ的童鞋也不要担心,Apollo 1.0提供了一个本地仿真工具,给你一个与Apollo亲密接触的途径,让你可以在PC上肆无忌惮地玩耍,毕竟Apollo 1.0仅提供封闭场地的寻迹能力,相对简单。

我们的重点是Apollo open software Platform这一层,而这一层中,我们不关心apollo kernel,只关心Apollo ROS和三个已经开放的apollo modules。

1、下载release版本

截至目前为止,Apollo仅发布了一个版本:apollo-v1.0.0,我们可以从github上将其下载到本地:

# wget -c https://github.com/ApolloAuto/apollo/archive/v1.0.0.tar.gz
# tar zxvf v1.0.0.tar.gz
# cd apollo-1.0.0
# ls -F
apollo_docker.sh*  apollo.doxygen  apollo.sh*  AUTHORS.md  BUILD  CPPLINT.cfg
docker/  docs/  LICENSE  modules/  README.md  scripts/  third_party/  tools/  WORKSPACE

注意:我的实验环境为ubuntu 16.04.1 amd64。

2、本地源码构建

对于基于Apollo这个framework的开发者,Apollo官方强烈建议直接采用官方预定义好的专用docker环境(for dev)。对于爱折腾的我而言,必须要在本地做一次源码构建,即使这个体验是糟糕的,甚至最终是失败的^0^。源码构建的命令很简单,一行即可:

# cd apollo-1.0.0
# bash apollo.sh build

在这个过程中,我遇到了两个错误:

  • bazel不存在

Apollo的构建依赖google出品的bazel构建工具,我个人对bazel并没有什么研究,这里先装上再说:

# echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" |  tee /etc/apt/sources.list.d/bazel.list
deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8

# curl https://bazel.build/bazel-release.pub.gpg | apt-key add -
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  3157  100  3157    0     0   3202      0 --:--:-- --:--:-- --:--:--  3201
OK

# apt-get update && apt-get install bazel
  • third_party/ros/setup.bash: No such file or directory

apollo的编译要依赖ros,但apollo并没有自带ros。我们需要到apollo platform那个项目中去下载Apollo ROS:

# wget -c https://github.com/ApolloAuto/apollo-platform/releases/download/1.0.0/ros-indigo-apollo-1.0.0.x86_64.tar.gz
# tar zxvf ros-indigo-apollo-1.0.0.x86_64.tar.gz
# cd ros
# ls -F
bin/  BUILD  env.sh*  etc/  include/  lib/  setup.bash  setup.sh  _setup_util.py*  setup.zsh  share/

将下载的ros目录copy到apollo-1.0.0/third_party下,并chmod +x third_party/ros/setup.bash。

我们再次执行bash apollo.sh build,这次执行前面的error和warning基本都消失了,apollo.sh脚本开始下载依赖包并编译:

# bash apollo.sh build
ROS_DISTRO was set to 'kinetic' before. Please make sure that the environment does not mix paths from different distributions.
[WARNING] ESD CAN library supplied by ESD Electronics does not exit.
[WARNING] If you need ESD CAN, please refer to third_party/can_card_library/esd_can/README.md
.
____Loading package: modules/common/util/testing
____Loading package: @com_github_grpc_grpc//
____Loading package: @google_styleguide//
____Loading package: @glog//
____Loading package: @eigen//
____Loading package: @gtest//
____Loading package: @civetweb//
____Loading package: @com_github_google_protobuf//
____Loading package: @websocketpp//
____Loading package: @curlpp//
Building on x86_64, with targets:
//tools/platforms:x86_64
//tools/platforms:aarch64
//modules/prediction:prediction
//modules/prediction:prediction_lib
... ...
//modules/common:log
//modules/canbus/proto:canbus_proto.pb
//:x86_64
//:arm64
WARNING: Running Bazel server needs to be killed, because the startup options are different.
INFO: Downloading https://github.com/google/boringssl/archive/master-with-bazel.zip via codeload.github.com: 2,750,374 bytes
INFO: Cloning https://github.com/madler/zlib: Receiving objects (3309 / 5016)
INFO: Downloading https://github.com/google/boringssl/archive/master-with-bazel.zip via codeload.github.com: 2,773,664 bytes
INFO: Cloning https://github.com/madler/zlib: Receiving objects (3314 / 5016)
INFO: Downloading https://github.com/google/boringssl/archive/master-with-bazel.zip via codeload.github.com: 2,795,584 bytes
INFO: Downloading https://github.com/google/boringssl/archive/master-with-bazel.zip via codeload.github.com: 13,504,198 bytes

INFO: Downloading https://github.com/google/boringssl/archive/master-with-bazel.zip via codeload.github.com: 13,522,008 bytes
INFO: Found 190 targets...
[34 / 41] Compiling external/com_github_google_protobuf/src/google/protobuf/compiler/java/java_message_lite.cc [for host]
[41 / 48] Compiling external/com_github_google_protobuf/src/google/protobuf/compiler/command_line_interface.cc [for host]
[157 / 163] Compiling external/com_github_google_protobuf/src/google/protobuf/compiler/javanano/javanano_enum.cc [for host]
[752 / 756] Compiling external/com_github_grpc_grpc/src/core/ext/client_config/resolver_result.c

ERROR: /root/test/apolloauto/apollo-1.0.0/modules/canbus/BUILD:32:1: Linking of rule '//modules/canbus:canbus' failed: gcc failed: error executing command /usr/bin/gcc -o bazel-out/local-dbg/bin/modules/canbus/canbus '-Wl,-rpath,$ORIGIN/../../_solib_k8/_U_S_Sthird_Uparty_Sros_Cros_Ucommon___Uthird_Uparty_Sros_Slib' ... (remaining 8 argument(s) skipped): com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 1.
modules/canbus/main.cc:21: error: undefined reference to 'ros::init(int&, char**, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, unsigned int)'
third_party/ros/include/ros/publisher.h:107: error: undefined reference to 'ros::console::initializeLogLocation(ros::console::LogLocation*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, ros::console::levels::Level)'
... ...
collect2: error: ld returned 1 exit status
INFO: Elapsed time: 578.172s, Critical Path: 26.62s
============================
[ERROR] Build failed!
[INFO] Took 597.189 seconds
============================

经过漫长的等待后,还是以失败告终。并且C++的错误输出分析起来真是好痛苦,于是暂时放弃本地源码编译。

3、pre-specified Docker dev环境

既然apollo已经为我们准备好了pre-specified Docker dev环境,我们不妨用一下,下载和启动该环境可以用下面命令:

# cd apollo-1.0.0
# bash docker/scripts/dev_start.sh

apolloauto/apollo:dev-latest这个image超级庞大,大约有7个G左右,所以你需要耐心等待一会儿了。docker运行起来后,我们在另外一个terminal windows下可以执行下面命令切入到该docker容器内部:

# bash docker/scripts/dev_into.sh
root@myhost: /apollo#

在dev container中,我们可以来编译一下apollo源码:

root@myhost:/apollo# bash apollo.sh build
... ...
Copyright (c) 2017 Various License Holders. All Rights Reserved
Apollo software is built on top of various other open source software packages,
a complete list of licenses are located at https://github.com/ApolloAuto/apollo/blob/master/third_party/ACKNOWLEDGEMENT.txt

You agree to the terms of all the License Agreements.

Type 'y' or 'Y' to agree to the license agreement above, or type any other key to exit
y[WARNING] ESD CAN library supplied by ESD Electronics does not exit.
[WARNING] If you need ESD CAN, please refer to third_party/can_card_library/esd_can/README.md
____Loading package: modules/monitor/common
____Loading package: modules/common/adapters
____Loading package: modules/dreamview/conf
____Loading package: modules/control/integration_tests
____Loading package: @google_styleguide//
____Loading package: @com_github_google_protobuf//
... ...
[502 / 1,099] Compiling external/com_github_grpc_grpc/src/core/ext/transport/chttp2/transport/hpack_encoder.c
[914 / 1,524] Compiling external/com_github_grpc_grpc/src/core/ext/census/tracing.c
[1,304 / 1,527] Linking modules/canbus/vehicle/libmessage_manager_base.a

INFO: Elapsed time: 371.151s, Critical Path: 260.93s
============================
[ OK ] Build passed!
[INFO] Took 401.521 seconds
============================

由于dev环境中相关的依赖已经就绪,因此无需过多干预,在漫长的一段等待后,我们看到编译ok了。

4、运行apollo demo

在dev enviroment中或apollo:release-latest中,我们都可以运行apollo的一个寻迹小车的demo。以apollo:release-latest image环境为例:

// 启动基于apollo:release-latest image的apollo container(image size大约为3G,耐心等待下载):

# cd apollo-1.0.0/
# bash docker/scripts/release_start.sh

//切入到容器中去
# bash docker/scripts/release_into.sh
root@myhost:/apollo#

在容器中启动HMI(human-machine interface):

root@myhost:/apollo# bash scripts/hmi.sh
Start roscore...
HMI ros node service running at localhost:8887
HMI running at http://localhost:8887

root@myhostr:/apollo# rosnode list
/hmi_ros_node_service
/rosout

可以看到,hmi.sh脚本启动了roscore(ros master节点和相关服务)以及hmi的service,我们打开浏览器,输入:http://host_ip:8887即可看到如下场景:

img{512x368}

在容器内继续执行如下命令,回放小车的轨迹数据:

# rosbag play -l ./docs/demo_guide/demo.bag

[ INFO] [1502809442.462789096]: Opening ./docs/demo_guide/demo.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.
 [RUNNING]  Bag Time: 1497125289.756657   Duration: 20.614178 / 41.613536
 [RUNNING]  Bag Time: 1497125289.896669   Duration: 20.754189 / 41.613536
... ...

我们打开hmi页面上的Debug开关,点击右上角的”Dreamview”按钮,稍后片刻,你就会在新打开的页面上看到小车仿真寻迹行驶的场景了:

img{512x368}

最初实验时,由于没有在阿里云的防火墙打开8888端口,导致dreamview的websocket建立连接失败,dreamview页面始终无法显示出小车。后经与apollo team的ycool在线联调才发现这个问题。这个问题的解决方法也已更新到Apollo的FAQ中了。

四、小结

Baidu为apollo项目做了一个4年的规划(见下面的roadmap),并计划在2020年实现全路网自动驾驶,这个说法似乎有意避开了自动驾驶的级别,这个2020目标到底是L4呢还是L5呢?不过无论是L4还是L5,这个目标都十分有挑战啊。

img{512x368}

个人觉得:未来的L4、L5级别的自动驾驶一定不光光是依靠车辆自身的设备与算法,还要与道路基础设施相配合去实现。甚至是依赖车与车之间的通信才能做到全天候、全路况的自动驾驶。apollo虽然迈出了第一步,但任重道远,让我们拭目以待吧!


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite




这里是Tony Bai的个人Blog,欢迎访问、订阅和留言!订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:


以太币:


如果您喜欢通过微信App浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:



本站Powered by Digital Ocean VPS。

选择Digital Ocean VPS主机,即可获得10美元现金充值,可免费使用两个月哟!

著名主机提供商Linode 10$优惠码:linode10,在这里注册即可免费获得。

阿里云推荐码:1WFZ0V立享9折!

View Tony Bai's profile on LinkedIn


文章

评论

  • 正在加载...

分类

标签

归档











更多