标签 枚举 下的文章

Go类型系统:有何与众不同

本文永久链接 – https://tonybai.com/2022/12/18/go-type-system

Go是一门强类型的静态编程语言。使用Go编程,我们的每一行代码几乎都离不开类型。因此,深入学习Go,我们首先要对Go的类型系统(type system)有一个全面和深入的认知。Go类型系统可以给予我们一个全局整体的视角,以帮助我们更好地学习和理解Go语言中那些具体的与类型相关的内容。

一. 什么是类型系统

作为拥有一定Go编程经验的Gopher来说,大家对Go语言中的类型是有一定了解的,比如:Go内置了原生整型类型、浮点类型、复数类型、字符串类型、函数类型,提供了数组、切片、map、struct、channel等复合类型以及代表行为抽象的接口类型。通过Go提供的type关键字,我们还可以自定义类型等等。

那么大家是否想过这样的问题:为什么会有类型?类型可以带来哪些好处呢?回顾编程语言的发展史(见下图),我们发现:类型是高级语言有别于机器语言与低级语言的一种重要的抽象

从机器的视角来看,无论什么类型数据都是0101的二进制数据,但程序员直接用机器语言编码难度非常大且效率极其低下;汇编语言将层次提升到了面向多字节数据的编码,汇编指令的操作数都是固定长度字节的,比如:movb操作的是一个字节,movl操作的是四个字节。汇编指令并不关心真实存储的是什么数据,只是在各个地址之间搬移特定长度的数据。显然汇编的抽象层次依旧不高,直接用汇编写程序依然有很大难度以及较为低效。

高级语言之所以高级,就是因为它建立了类型这一重要抽象,类型抽象为开发者屏蔽了机器层面数据的复杂表示。类型下面的复杂的字节和bit操作由高级语言的编译器和运行时协助完成,开发人员只需面向类型进行编码即可,也就是说类型成为了开发者与编译器之间的“操作界面”

面向类型编程,开发者就要了解类型的能力、其所代表的抽象的含义以及遵循类型的使用规则/约束。类型决定了你可以在该类型实例中存储的值的范围;类型决定了你可以对该类型进行的操作;类型决定了该类型的变量需要的存储空间;类型决定了与其他类型间建立连接的方法:组合、“继承”还是接口实现等。

那么类型的这些能力、规则与约束是谁赋予的呢?没错,正是编程语言的类型系统

类型系统是高级语言的核心,它存在于语言规范中,向开发者明确了类型的能力、使用规则与约束;它存在于编译器中,保证开发者对类型的正确合规使用;它也存在于语言运行时里,为类型提供如多态这样的动态能力

可以说,高级编程语言用类型系统赋能类型并管理类型。不过,不同语言的类型系统的设计与实现是有较大差别的,那么Go语言的类型系统又有哪些与众不同之处呢?我们接下来就来重点看看Go的类型系统。

二. Go的类型系统

下面我们从类型定义、类型推导、类型检查、类型连接等多个方面说明一下Go类型系统具备的能力与不足。

1. 类型定义

大家知道Go支持几乎所有类型,下面是Go spec中的类型分类的列表截图:

同时,Go还支持使用type关键字定义的自定义类型以及类型别名(type alias):

type CustomType int // 底层类型为原生类型int的自定义类型CustomType

type S struct {
    a int
    b string
} // 基于struct的自定义类型S

type IntAlias = int // int的类型别名IntAlias

注:自定义类型与其底层类型(underlying type)是两个完全不同的类型,而类型别名并未引入新类型,与原类型等价。

不过有两种在其他语言中常见的类型,Go类型系统没有给予支持,一种是union联合类型,在这种类型中,其所有字段共享同一个内存空间:

// C代码

// 定义一个名为num的union类型
// 其三个成员m, ch, f共享同一个内存空间
// C编译器会以最大的字段的size为num类型变量分配内存空间
union num {
    int m;
    char ch;
    double f;
};
union num a, b, c; // 声明三个union类型变量

另外一种是enum枚举类型,不过enum枚举类型可一定程度上用const(可选加iota)来模拟:

// C语法
enum Weekday {
        SUNDAY,
        MONDAY,
        TUESDAY,
        WEDNESDAY,
        THURSDAY,
        FRIDAY,
        SATURDAY
};

// Go模拟实现Weekday
type Weekday int

const (
        Sunday Weekday = iota
        Monday
        Tuesday
        Wednesday
        Thursday
        Friday
        Saturday
)

Go从1.18版本开始支持泛型,这让Go类型系统具备定义带有类型参数(type parameters)的类型以及函数的能力。

2. 类型推导

Go类型系统支持自动类型推导能力,编译器可以推断出变量或函数的类型,而不需要我们明确指定:

var s = "hello" // s是string类型
a := 128        // a是int类型
f := 4.3567     // f是float64类型

除了支持普通类型推导,Go还支持泛型的自动类型实参推导,下面是一个来自go spec的例子:

func scale[Number ~int64|~float64|~complex128](v []Number, s Number) []Number

var vector []float64
scaledVector := scale(vector, 42)

例子中,通过scale调用时传入的实参类型,编译器可以自动推导出scale的类型参数Number的实参为float64。更多关于Go泛型的语法细节,可以参考《Go语言第一课》专栏的泛型篇

3. 类型检查

Go是一门强类型静态编程语言,意味着每个变量在使用之前都必须声明其类型。有了类型后,我们就可以按照Go类型系统规定的针对这个类型有效操作对其进行操作。

Go编译器以及运行时会分别在编译期间和运行期间对变量类型作检查,目的是确保操作只用于正确的类型,并且类型系统的规则被程序所遵守,保证类型安全等。

Go是强类型语言,并且没有隐式类型转换,所有类型转换都要以明确意图的显式类型转换来实施,Go编译器会在编译期间对类型转换进行检查,只有底层类型兼容的两个类型才可以实施显式转型:

type T1 int
type T2 struct{}

var i int = 5
var t T1
var s T2
t = i     // 错误,不是同一类型
t = T1(i) // ok,底层类型兼容
s = T2(t) // 错误,底层类型不兼容

除了编译期间的静态检查之外,Go类型系统还支持运行时动态类型检查,比如:检查传给接口变量的类型实例是否实现了该接口;在运行时对数组、切片类型的下标边界进行检查,确保下标不越界,保证内存安全等。

不过Go也提供了绕过类型系统检查的手段,比如unsafe.Pointer以及反射等。

4. 类型连接

Go并非经典OO语言,它的类型虽然可以拥有自己的方法(method),但Go却没有提供经典OO中的复杂的继承层次结构,没有父类,没有子类,更没有供类型初始化的构造函数。在Go的类型系统中,类型之间建立连接的方式只有组合,通过类型嵌入(type embedding),我们可以实现各类组合,可以嵌入非接口类型,亦可以嵌入接口来定义新组合后的类型。

通过类型组合,我们可以将各种类型连接在一起,共同对外提供聚合后的行为,包括多态能力。Go中标准的多态能力由interface类型实现,方法在运行时被分派,这取决于传给接口类型变量的具体类型。比如下面例子中AnimalQuackInForest中的Quack会依据传入的具体类型实例而分派,先后分派给Duck.Quack、Dog.Quack和Bird.Quack:

type QuackableAnimal interface {
    Quack()
}

type Duck struct{}

func (Duck) Quack() {
    println("duck quack!")
}

type Dog struct{}

func (Dog) Quack() {
    println("dog quack!")
}

type Bird struct{}

func (Bird) Quack() {
    println("bird quack!")
}                         

func AnimalQuackInForest(a QuackableAnimal) {
    a.Quack()
}                         

func main() {
    animals := []QuackableAnimal{new(Duck), new(Dog), new(Bird)}
    for _, animal := range animals {
        AnimalQuackInForest(animal)
    }
}

注:类型与接口之间的实现关系是隐式的,类型无需使用类implements关键字显式告知要实现的interface类型。

Go中的函数是一等公民,函数类型也可展现出一定的运行时多态能力,函数类型实例的最终执行结果取决于运行时传入的函数对象值。

三. 小结

Go提供了强大而又有趣的类型系统,不过Go没有提供enum、union类型,也不支持运算符重载(operator overloading)、函数重载、结构化错误处理以及可选/默认函数参数等。这与Go的设计者做出的保持Go简单的决策不无关系。同时类型系统在保证Go这门的语言的安全性方面也是功不可没。

如果你认真对待Go编程,你应该投入时间,了解它的类型系统和它的特殊性,这将是非常值得你花时间的。

四. 参考资料

  • Type Systems in Software Explained With Examples – https://thevaluable.dev/type-system-software-explained-example/
  • The Go type system for newcomers – https://rakyll.org/typesystem/
  • Deep Dive Into the Go Type System – https://code.tutsplus.com/tutorials/deep-dive-into-the-go-type-system–cms-29065
  • Understanding Golang Type System – https://thenewstack.io/understanding-golang-type-system/
  • A Closer Look at Golang From an Architect’s Perspective – https://thenewstack.io/a-closer-look-at-golang-from-an-architects-perspective/
  • https://go101.org/article/type-system-overview.html
  • https://baziotis.cs.illinois.edu/compilers/the-weird-type-system-of-golang.html
  • https://blog.ankuranand.com/2018/11/29/a-closer-look-at-go-golang-type-system/
  • 《Type Systems for Programming Languages》 – https://ropas.snu.ac.kr/~kwang/520/pierce_book.pdf
  • 《Programming with Types》 – https://book.douban.com/subject/35325133/
  • Type Systems in Programming Languages – https://www.tektutorialshub.com/programming/type-systems-in-programming-languages/
  • 《Category Theory for Programmers》 – https://book.douban.com/subject/30357114/
  • Type system(维基百科) – https://en.wikipedia.org/wiki/Type_system
  • 类型系统的比较 – https://en.wikipedia.org/wiki/Comparison_of_type_systems

“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

使用反射操作channel

本文永久链接 – https://tonybai.com/2022/11/15/using-reflect-to-manipulate-channels


今年教师节极客时间送给讲师4999 SVIP卡,一直没顾过来用,上周激活后在极客时间的众多精品课和专栏中徜徉,收获颇丰。尤其是在拜读鸟窝老师的《Go并发编程实战课》 后,get到一个以前从未用过的“技能点”:使用reflect操作channel,这里整理一下,把它分享给大家。

1. channel常规语法的“限制”

Go语言实现了基于CSP(Communicating Sequential Processes)理论的并发方案。方案包含两个重要元素,一个是Goroutine,它是Go应用并发设计的基本构建与执行单元;另一个就是channel,它在并发模型中扮演着重要的角色。channel既可以用来实现Goroutine间的通信,还可以实现Goroutine间的同步。

我们先来简要回顾一下有关channel的常规语法。

我们可以通过make(chan T, n)创建元素类型为T、容量为n的channel类型实例,比如:

ch1 := make(chan int)    // 创建一个无缓冲的channel实例ch1
ch2 := make(chan int, 5)  // 创建一个带缓冲的channel实例ch2

Go提供了“<-”操作符用于对channel类型变量进行发送与接收操作,下面是一些对上述channel ch1和ch2进行收发操作的代码示例:

ch1 <- 13    // 将整型字面值13发送到无缓冲channel类型变量ch1中
n := <- ch1  // 从无缓冲channel类型变量ch1中接收一个整型值存储到整型变量n中
ch2 <- 17    // 将整型字面值17发送到带缓冲channel类型变量ch2中
m := <- ch2  // 从带缓冲channel类型变量ch2中接收一个整型值存储到整型变量m中

Go不仅提供了单独操作channel的语法,还提供了可以同时对多个channel进行操作的select-case语法,比如下面代码:

select {
case x := <-ch1:     // 从channel ch1接收数据
  ... ...

case y, ok := <-ch2: // 从channel ch2接收数据,并根据ok值判断ch2是否已经关闭
  ... ...

case ch3 <- z:       // 将z值发送到channel ch3中:
  ... ...

default:             // 当上面case中的channel通信均无法实施时,执行该默认分支
}

我们看到:select语法中的case数量必须是固定的,我们只能把事先要交给select“监听”的channel准备好,在select语句中平铺开才可以。这就是select语句常规语法的限制,即select语法不支持动态的case集合。如果我们要监听的channel个数是不确定的,且在运行时会动态变化,那么select语法将无法满足我们的要求。

那怎么突破这一限制呢?鸟窝老师告诉我们用reflect包

2. reflect.Select和reflect.SelectCase

很多朋友可能和我一样,因为没有使用过reflect包操作channel,就会以为reflect操作channel的能力是Go新版本才提供的,但实则不然。reflect包中用于操作channel的函数Select以及其切片参数的元素类型SelectCase早在Go 1.1版本就加入到Go语言中了,有下图为证:

那么如何使用这一“古老”的机制呢?我们一起来看一些例子。

首先我们来看第一种情况,也是最好理解的一种情况,即从一个动态的channel集合进行receive operations的select,下面是示例代码:

// github.com/bigwhite/experiments/tree/master/reflect-operate-channel/select-recv/main.go
package main

import (
    "fmt"
    "math/rand"
    "reflect"
    "sync"
    "time"
)

func main() {
    var wg sync.WaitGroup
    wg.Add(2)
    var rchs []chan int
    for i := 0; i < 10; i++ {
        rchs = append(rchs, make(chan int))
    }

    // 创建SelectCase
    var cases = createRecvCases(rchs)

    // 消费者goroutine
    go func() {
        defer wg.Done()
        for {
            chosen, recv, ok := reflect.Select(cases)
            if ok {
                fmt.Printf("recv from channel [%d], val=%v\n", chosen, recv)
                continue
            }
            // one of the channels is closed, exit the goroutine
            fmt.Printf("channel [%d] closed, select goroutine exit\n", chosen)
            return
        }
    }()

    // 生产者goroutine
    go func() {
        defer wg.Done()
        var n int
        s := rand.NewSource(time.Now().Unix())
        r := rand.New(s)
        for i := 0; i < 10; i++ {
            n = r.Intn(10)
            rchs[n] <- n
        }
        close(rchs[n])
    }()

    wg.Wait()
}

func createRecvCases(rchs []chan int) []reflect.SelectCase {
    var cases []reflect.SelectCase

    // 创建recv case
    for _, ch := range rchs {
        cases = append(cases, reflect.SelectCase{
            Dir:  reflect.SelectRecv,
            Chan: reflect.ValueOf(ch),
        })
    }
    return cases
}

在这个例子中,我们通过createRecvCases这个函数创建一个元素类型为reflect.SelectCase的切片,之后使用reflect.Select可以监听这个切片集合,就像常规select语法那样,从有数据的recv Channel集合中随机选出一个返回。

reflect.SelectCase有三个字段:

// $GOROOT/src/reflect/value.go
type SelectCase struct {
    Dir  SelectDir // direction of case
    Chan Value     // channel to use (for send or receive)
    Send Value     // value to send (for send)
}

其中Dir字段的值是一个“枚举”,枚举值如下:

// $GOROOT/src/reflect/value.go
const (
    _             SelectDir = iota
    SelectSend              // case Chan <- Send
    SelectRecv              // case <-Chan:
    SelectDefault           // default
)

从常量名我们也可以看出,Dir用于标识case的类型,SelectRecv表示这是一个从channel做receive操作的case,SelectSend表示这是一个向channel做send操作的case;SelectDefault则表示这是一个default case。

构建好SelectCase的切片后,我们就可以将其传给reflect.Select了。Select函数的语义与select关键字语义是一致的,它会监听传入的所有SelectCase,以上面示例为例,如果所有channel都没有数据,那么reflect.Select会阻塞,直到某个channel有数据或关闭。

Select函数有三个返回值:

// $GOROOT/src/reflect/value.go
func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool)

对于上面示例而言,如果监听的某个case有数据了,那么Select的返回值chosen中存储了该channel在cases切片中的下标,recv中存储了从channel收到的值,recvOK等价于comma, ok模式的ok,当正常接收到由send channel操作发送的值时,recvOK为true,如果channel被close了,recvOK为false。

上面的示例启动了两个goroutine,一个goroutine充当消费者,由reflect.Select监听一组channel,当某个channel关闭时,该goroutine退出;另外一个goroutine则是随机的向这些channel中发送数据,发送10次后,关闭其中某个channel通知消费者退出。

我们运行一下该示例程序,得到如下结果:

$go run main.go
recv from channel [1], val=1
recv from channel [4], val=4
recv from channel [5], val=5
recv from channel [8], val=8
recv from channel [1], val=1
recv from channel [1], val=1
recv from channel [8], val=8
recv from channel [3], val=3
recv from channel [5], val=5
recv from channel [9], val=9
channel [9] closed, select goroutine exit

我们日常编码时经常会在select语句中加上default分支,以防止select完全阻塞,下面我们就来改造一下示例,让其增加对default分支的支持:

// github.com/bigwhite/experiments/tree/master/reflect-operate-channel/select-recv-with-default/main.go

package main

import (
    "fmt"
    "math/rand"
    "reflect"
    "sync"
    "time"
)

func main() {
    var wg sync.WaitGroup
    wg.Add(2)
    var rchs []chan int
    for i := 0; i < 10; i++ {
        rchs = append(rchs, make(chan int))
    }

    // 创建SelectCase
    var cases = createRecvCases(rchs, true)

    // 消费者goroutine
    go func() {
        defer wg.Done()
        for {
            chosen, recv, ok := reflect.Select(cases)
            if cases[chosen].Dir == reflect.SelectDefault {
                fmt.Println("choose the default")
                continue
            }
            if ok {
                fmt.Printf("recv from channel [%d], val=%v\n", chosen, recv)
                continue
            }
            // one of the channels is closed, exit the goroutine
            fmt.Printf("channel [%d] closed, select goroutine exit\n", chosen)
            return
        }
    }()

    // 生产者goroutine
    go func() {
        defer wg.Done()
        var n int
        s := rand.NewSource(time.Now().Unix())
        r := rand.New(s)
        for i := 0; i < 10; i++ {
            n = r.Intn(10)
            rchs[n] <- n
        }
        close(rchs[n])
    }()

    wg.Wait()
}

func createRecvCases(rchs []chan int, withDefault bool) []reflect.SelectCase {
    var cases []reflect.SelectCase

    // 创建recv case
    for _, ch := range rchs {
        cases = append(cases, reflect.SelectCase{
            Dir:  reflect.SelectRecv,
            Chan: reflect.ValueOf(ch),
        })
    }

    if withDefault {
        cases = append(cases, reflect.SelectCase{
            Dir:  reflect.SelectDefault,
            Chan: reflect.Value{},
            Send: reflect.Value{},
        })
    }

    return cases
}

在这个示例中,我们的createRecvCases函数增加了一个withDefault布尔型参数,当withDefault为true时,返回的cases切片中将包含一个default case。我们看到,创建defaultCase时,Chan和Send两个字段需要传入空的reflect.Value。

在消费者goroutine中,我们通过选出的case的Dir字段是否为reflect.SelectDefault来判定是否default case被选出,其余的处理逻辑不变,我们运行一下这个示例:

$go run main.go
recv from channel [8], val=8
recv from channel [8], val=8
choose the default
choose the default
choose the default
choose the default
choose the default
recv from channel [1], val=1
choose the default
choose the default
choose the default
recv from channel [3], val=3
recv from channel [6], val=6
choose the default
choose the default
recv from channel [0], val=0
choose the default
choose the default
choose the default
recv from channel [5], val=5
recv from channel [2], val=2
choose the default
choose the default
choose the default
recv from channel [2], val=2
choose the default
choose the default
recv from channel [2], val=2
choose the default
choose the default
channel [2] closed, select goroutine exit

我们看到,default case被选择的几率还是蛮大的。

最后,我们再来看看如何使用reflect包向channel中发送数据,看下面示例代码:

// github.com/bigwhite/experiments/tree/master/reflect-operate-channel/select-send/main.go

package main

import (
    "fmt"
    "reflect"
    "sync"
)

func main() {
    var wg sync.WaitGroup
    wg.Add(2)
    ch0, ch1, ch2 := make(chan int), make(chan int), make(chan int)
    var schs = []chan int{ch0, ch1, ch2}

    // 创建SelectCase
    var cases = createCases(schs)

    // 生产者goroutine
    go func() {
        defer wg.Done()
        for range cases {
            chosen, _, _ := reflect.Select(cases)
            fmt.Printf("send to channel [%d], val=%v\n", chosen, cases[chosen].Send)
            cases[chosen].Chan = reflect.Value{}
        }
        fmt.Println("select goroutine exit")
        return
    }()

    // 消费者goroutine
    go func() {
        defer wg.Done()
        for range schs {
            var v int
            select {
            case v = <-ch0:
                fmt.Printf("recv %d from ch0\n", v)
            case v = <-ch1:
                fmt.Printf("recv %d from ch1\n", v)
            case v = <-ch2:
                fmt.Printf("recv %d from ch2\n", v)
            }
        }
    }()

    wg.Wait()
}

func createCases(schs []chan int) []reflect.SelectCase {
    var cases []reflect.SelectCase

    // 创建send case
    for i, ch := range schs {
        n := i + 100
        cases = append(cases, reflect.SelectCase{
            Dir:  reflect.SelectSend,
            Chan: reflect.ValueOf(ch),
            Send: reflect.ValueOf(n),
        })
    }

    return cases
}

在这个示例中,我们针对三个channel:ch0,ch1和ch2创建了写操作的SelectCase,每个SelectCase的Send字段都被赋予了要发送给该channel的值,这里使用了“100+下标号”。

生产者goroutine中有一个“与众不同”的地方,那就是每次某个写操作触发后,我都将该SelectCase中的Chan重置为一个空Value,以防止下次该channel被重新选出:

    cases[chosen].Chan = reflect.Value{}

运行一下该示例,我们得到:

$go run main.go
recv 101 from ch1
send to channel [1], val=101
send to channel [0], val=100
recv 100 from ch0
recv 102 from ch2
send to channel [2], val=102
select goroutine exit

通过上面的几个例子我们看到,reflect.Select有着与select等价的语义,且还支持动态增删和修改case,功能不可为不强大,现在还剩一点要care,那就是它的执行性能如何呢?我们接着往下看。

3. reflect.Select的性能

我们用benchmark test来对比一下常规select与reflect.Select在执行性能上的差别,下面是benchmark代码:

// github.com/bigwhite/experiments/tree/master/reflect-operate-channel/select-benchmark/benchmark_test.go
package main

import (
    "reflect"
    "testing"
)

func createCases(rchs []chan int) []reflect.SelectCase {
    var cases []reflect.SelectCase

    // 创建recv case
    for _, ch := range rchs {
        cases = append(cases, reflect.SelectCase{
            Dir:  reflect.SelectRecv,
            Chan: reflect.ValueOf(ch),
        })
    }
    return cases
}

func BenchmarkSelect(b *testing.B) {
    var c1 = make(chan int)
    var c2 = make(chan int)
    var c3 = make(chan int)

    go func() {
        for {
            c1 <- 1
        }
    }()
    go func() {
        for {
            c2 <- 2
        }
    }()
    go func() {
        for {
            c3 <- 3
        }
    }()

    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        select {
        case <-c1:
        case <-c2:
        case <-c3:
        }
    }
}

func BenchmarkReflectSelect(b *testing.B) {
    var c1 = make(chan int)
    var c2 = make(chan int)
    var c3 = make(chan int)

    go func() {
        for {
            c1 <- 1
        }
    }()
    go func() {
        for {
            c2 <- 2
        }
    }()
    go func() {
        for {
            c3 <- 3
        }
    }()

    chs := createCases([]chan int{c1, c2, c3})

    b.ReportAllocs()
    b.ResetTimer()

    for i := 0; i < b.N; i++ {
        _, _, _ = reflect.Select(chs)
    }
}

运行一下该benchmark:

$go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/experiments/reflect-operate-channel/select-benchmark
... ...
BenchmarkSelect-8            2765396           427.8 ns/op         0 B/op          0 allocs/op
BenchmarkReflectSelect-8     1839706           806.0 ns/op       112 B/op          6 allocs/op
PASS
ok      github.com/bigwhite/experiments/reflect-operate-channel/select-benchmark    3.779s

我们看到:reflect.Select的执行效率相对于select还是要差的,并且在其执行过程中还要做额外的内存分配。

4. 小结

本文介绍了reflect.Select与SelectCase的结构以及如何使用它们在不同场景下操作channel。但大多数情况下,我们是不需要使用reflect.Select,常规select语法足以满足我们的要求。并且reflect.Select有对cases数量的约束,最大支持65536个cases,虽然这个约束对于大多数场合而言足够用了。

本文涉及的示例源码可以在这里下载。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats